Ленточный фундамент схема: Ничего не найдено для Fundament Chertezh Fundamenta Plan Fundamenta Lentochnogo Chertezh %23Opory Dlya Lentochnogo Osnovaniya

Содержание

Страница не найдена – ГидФундамент

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

Содержание статьи1 Этапы возведения мелкозаглубленного ленточного фундамента1.1 Проектирование, расчёт1.

2 Водоотведение с участка1.3 Планировка и разметка1.4 Организация строительной площадки1.5 Земляные работы1.6 […]

Содержание статьи1 Фундамент забора с кирпичными столбами2 Геология участка3 Промерзание грунта4 Материал фундамента4.1 Бетонирование с армированием4.2 Бутовый бетон5 Виды фундаментов […]

Содержание статьи1 Виды конструкций откатных ворот1.1 Консольные1.2 Подвесные1.3 Рельсовые2 Фундамент под откатные ворота2.1 Общие моменты технологии возведения фундамента2.2 Типы фундамента […]

Содержание статьи1 Когда армирование кладки не нужно2 Исторический опыт3 Общее понимание армирования кладки4 Назначение армирования кладки5 Виды армирования6 Сетка металлическая […]

Содержание статьи1 Структура композитной арматуры2 Типоразмеры и параметры3 Сферы применения4 Ребристые и гладкие стержни5 Преимущества композитной арматуры6 Рекомендации по выбору […]

Содержание статьи1 Обзор опалубочных систем и применяемых материалов2 Самостоятельное изготовление опалубки перекрытий – принципы и условия3 Монтаж опалубки монолитного перекрытия3. 1 […]

Страница не найдена – ГидФундамент

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

Содержание статьи1 Этапы возведения мелкозаглубленного ленточного фундамента1.1 Проектирование, расчёт1. 2 Водоотведение с участка1.3 Планировка и разметка1.4 Организация строительной площадки1.5 Земляные работы1.6 […]

Содержание статьи1 Фундамент забора с кирпичными столбами2 Геология участка3 Промерзание грунта4 Материал фундамента4.1 Бетонирование с армированием4.2 Бутовый бетон5 Виды фундаментов […]

Содержание статьи1 Виды конструкций откатных ворот1.1 Консольные1.2 Подвесные1.3 Рельсовые2 Фундамент под откатные ворота2.1 Общие моменты технологии возведения фундамента2.2 Типы фундамента […]

Содержание статьи1 Когда армирование кладки не нужно2 Исторический опыт3 Общее понимание армирования кладки4 Назначение армирования кладки5 Виды армирования6 Сетка металлическая […]

Содержание статьи1 Структура композитной арматуры2 Типоразмеры и параметры3 Сферы применения4 Ребристые и гладкие стержни5 Преимущества композитной арматуры6 Рекомендации по выбору […]

Содержание статьи1 Обзор опалубочных систем и применяемых материалов2 Самостоятельное изготовление опалубки перекрытий – принципы и условия3 Монтаж опалубки монолитного перекрытия3. 1 […]

Схема ленточного фундамента для дома, подготовка и разметка

В предыдущей статье, я рассказывал о том, как правильно рассчитать фундамент под кирпичный дом, ну а сегодня мы рассмотрим схему самого фундамента и определим, под какими стенами он необходим. Так же, в этой статье, я расскажу о том, как подготовить участок и правильно разметить все стены, под которые будет заливаться бетон.

О том, какой фундамент для кирпичного дома лучше, мы уже разобрались, и, в нашем случае, выбор пал на ленточный, ну а чтобы не повторяться – сразу приступим к схеме.

Для того, чтобы определиться со схемой ленточного фундамента, давайте взглянем на схему расположения комнат в доме.

Как мы видим – стен в доме очень много, и заливать монолитную железобетонную ленту под каждую из них – нецелесообразно, так как в этом случае, стоимость фундамента возрастет, как минимум, в два раза.

В большинстве случаев, достаточно устройство фундамента только под несущими и тяжелыми стенами. А тонкие и относительно легкие перегородки можно будет возвести на черновом бетонном (железобетонном) полу.

Несущие и самонесущие стены

Теперь давайте взглянем на схему самого фундамента, а далее я объясню, по какому принципу были выбраны внутренние несущие стены.

 

Несущие

стены №1 и №2 предназначены для того, чтобы более равномерно перенести нагрузку от кровли на фундамент. Дополнительное их предназначение – не дать значительного «провисания» деревянным потолочным балкам, так как между противоположными наружными стенами очень большое расстояние.

Ниже на схеме видно, как будут располагаться потолочные деревянные балки, на которые будет опираться вся крыша.

В связи с этим, эти стены будут, как минимум 20 – 25см толщиной, а это значит они уже будут иметь относительно большой вес. Помимо этого, на них еще будет опираться крыша, а отсутствие фундамента под такими стенами – чревато последствиями.

Стена №3 отделяет гараж, от основного дома. Насколько хорошо бы не отапливался гараж, все равно, в зимний период, это будет самое холодное помещение в доме из-за постоянно открывающихся ворот.

Так вот, в связи с вышесказанным, для удержания тепла в доме, решено было эту стену сделать утолщенной, такую же, как и все наружные стены. Хотя она и будет, практически, самонесущей, все равно будет иметь значительный вес, что подразумевает собой, наличие под ней достаточного фундамента.

Остальные стены, разделяющие комнаты и другие помещения между собой, можно сделать тонкими перегородками, нагрузку от которых без проблем выдержит армированный бетонный пол, залитый по грунту. Другими словами, фундамент под самонесущими тонкими перегородками заливаться не будет.

Толщина фундамента под несущими стенами

В предыдущей статье, в которой мы рассчитывали фундамент под кирпичный дом, я говорил, что вся монолитная железобетонная лента будет толщиной 40 см, несмотря на то, что общая толщина наружных стен будет около 50 см.

Ниже на схеме видно, как будет располагаться стена шириной 50см на цоколе шириной 38 см. (Почему фундамент 40см, а цоколь 38см – читайте в предыдущей статье).

Схема достаточно приблизительная и, соответственно, без соблюдения пропорций. Такие параметры, как толщина песчаной подушки, толщина монолитной железобетонной плиты и т.д. – мы рассмотрим позже, в соответствующих темах.

Так как поверх цоколя сразу будет залит черновой железобетонный пол, «провисания» стены не будет, а для прочности и опоры на грунт, подошва фундамента в 40 см, будет достаточной. Это позволит сэкономить на фундаменте.

Главным Вашим врагом в процессе разметки фундамента является трава и неровности грунта, из-за которых происходит большая часть ошибок в замерах. Поэтому, перед разметкой, будущий строительный участок был очищен от высокой растительности (травы, кустарников и т.д.). В большинстве случаев, для очистки и подготовки участка достаточно использовать триммер (бензо- или электрокоса).

Выравнивать ничего не пришлось, так как строительная площадка и так оказалась, более или менее ровной.

Конечно, на очистку было потрачено какое-то время и силы, но это позволило более точно разметить фундамент и в последствии значительно облегчило и ускорило работу.

Стоит добавить, что в нашем регионе следят за чистотой участков, а заброшенные и заросшие предполагают значительный штраф собственнику.

Разметка ленточного фундамента

Разметка производилась с помощью рулетки, шнура, колышков, сделанных из арматуры d8мм, и молотка, с помощью которого эти самые колышки забивались.

Первым делом, мы определяем месторасположение дома на участке. Схематично это выглядит вот так:

Прежде чем размечать расположение дома на участке, внимательно изучите документы, разрешающие строительство. Там должны быть прописаны основные правила размещения дома, относительно красной линии и соседских участков. На схеме красная линия внизу.

Теперь, необходимо разметить прямоугольный периметр всего дома.

Ниже на схеме, периметр обозначен красными точками.

Только после этого, можно приступать к разметке фундамента. Теперь есть от чего отталкиваться и разметить все стены не составит особого труда.

Порядок и технология точной разметки фундамента под дом, без использования дорогих инструментов и приборов, очень проста и подробна описана в одной из предыдущих статей. В нашем случае, она производилась точно так же, поэтому не будем на этом останавливаться.

После точной разметки периметра дома, с проверкой совпадения размеров диагоналей, мы разметили все внешние стены, а затем и внутренние. Таким образом, все было готово к следующему этапу строительства нашего будущего дома.

Стоит добавить, что разметка производилась вдвоем около 2 часов, так как дом огромный с большим количеством углов. Кстати говоря, разметку можно провести и одному человеку, но это достаточно долго и тяжело сделать точно.

Ну вот, в принципе, и все, что касается схемы фундамента под дом, а также всех подготовительных работ. Ну а в следующей статье мы приступим непосредственно к устройству самого фундамента под кирпичный дом.

Ленточный фундамент своими руками: пошаговая инструкция

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Правильно рассчитанный и построенный фундамент является залогом долговечной и безопасной эксплуатации любого здания и сооружения. Существует определенное количество видов фундамента, но самым востребованным из всех несомненно будет ленточный. Для его изготовления не требуется дополнительного оборудования. Каждый в силах построить ленточный фундамент своими руками: пошаговая инструкция по его возведению поможет в этом деле.

Ленточный фундамент, сделанный своими руками

Достоинства и недостатки ленточного типа фундамента

Свое название он получил, так как имеет вид железобетонной ленты, заглубленной в землю. Внешние и внутренние стены строения всей своей нижней плоскостью опираются на поверхность этой ленты. По типу заглубления в землю ленточный тип фундамента бывает заглубленный (от 1,45 до 1,65 м) и с мелким заглублением (менее 1,4 м). Первый тип возводится для крупных сооружений и многоэтажных домов, а второй для малоэтажного строительства. По структуре он может быть монолитным и сборным. Монолитный заливается из бетонного раствора, а сборный делается из отдельных железобетонных блоков.

Пример обустройства ленточного фундамента для дома из деревянного сруба

Для возведения монолитного фундамента могут применяться следующие материалы:

  • портландцемент;
  • песок;
  • щебень;
  • осколочная порода;
  • битый кирпич;
  • стальная арматура;
  • вода.

Потребность в этих материалах может быть предварительно рассчитана с помощью калькулятора расчета бетона на ленточный фундамент или вручную.

Пример ленточного фундамента с мелким заглублением

Ленточный фундамент обладает рядом преимуществ, делающих его по настоящему популярным среди всех иных видов оснований:

  • слабая восприимчивость к большим нагрузкам;
  • простое возведение без использования тяжелых технических средств;
  • надежность конструкции;
  • возможность строительства на неоднородных по плотности грунтах;
  • стены конструкции одновременно могут служить стенами в подвале дома.

Имеются у него и недостатки:

  • для строительства нужно много материалов;
  • требуется проведение гидроизоляционных работ.

Для строительства ленточного фундамента используется деревянная опалубка, стальная арматура, бетон

При всех своих достоинствах и недостатках данный вид основания широко распространен, особенно при частном строительстве.

Полезный совет! Для того, чтобы рассчитать нужное количества раствора, уже давно придуманы калькуляторы расчета бетона на ленточный фундамент. В них достаточно ввести параметры траншеи, чтобы получить полную информацию о количестве требуемых материалов. С помощью этих сервисов можно также рассчитать стоимость фундамента.

Ленточный фундамент своими руками: пошаговая инструкция

В связи с тем, что для строительства нет необходимости применять тяжелое техническое оборудование, каждый желающий может построить ленточный фундамент своими руками: пошаговая инструкция осуществления работ включает в себя несколько самостоятельных этапов.

Подробная схема строительства ленточного фундамента

Подготовка к работам и разметка по месту

Прежде чем приступить к возведению фундамента необходимо произвести планировку местности и разметку осей. Под планировкой подразумевается выравнивание всей площадки строительства по высоте. Если перепад высоты на участке значительный, то это обстоятельство необходимо учесть при рытье траншеи. В более высоких местах копать придется глубже, зато в более низких высота фундамента будет больше.

Шаг 1: Выравнивание площадки для строительства и разметка по месту

Разметка осей производится с помощью треугольника со сторонами 3:4:5. Углы должны получиться прямыми, а все диагонали равными.

Земляные работы

Это рытье траншеи на необходимую глубину по осям разметки. Глубина ее зависит от плотности грунта, расстояния до грунтовых вод, веса возводимого здания. Для многоэтажных зданий – это 1,5 м, а для частных домов достаточно 1 м, если позволяет грунт. После окончания копки траншеи, на ее дне проводится трамбовка и дренаж слоем песка и щебня. Это называется подушкой. Ширина траншеи зависит от типа материалов, из которых будут делаться стены. Для частных домов достаточно 60 см.

Шаг 2: Планировка местности и рытье траншеи

Создание опалубки для ленточного фундамента своими руками

Когда траншея готова, начинают сооружать опалубку. Некоторые строительные фирмы имеют в своем арсенале сборную многоразовую опалубку, которую очень удобно использовать. Своими руками опалубка для ленточного фундамента тоже может быть изготовлена. Для этого потребуется пиломатериал: бруски и тес. Его количество нужно рассчитывать индивидуально.

Шаг 3: После окончания рытья траншеи начинается сооружение опалубки

Опалубка имеет вид деревянного короба, установленный над всей траншеей. Так как туда будет заливаться жидкий раствор, то должна соблюдаться герметичность. Если этого невозможно достичь только с помощью досок, то можно обшить опалубку внутри рубероидом. Конструкция должна быть достаточно жесткой, чтобы выдержать давления залитого бетона. Для этого стенки опалубки скрепляются между собой перемычками через 2 – 3 метра. Как видим, создание опалубки для ленточного фундамента своими руками дело не такое уж и сложное.

Шаг 4: Создание опалубки для ленточного фундамента своими руками

Полезный совет! Для того, чтобы пиломатериал, используемый при изготовлении опалубки можно было использовать повторно, нужно конструировать ее так, чтобы при разборке не повредить доски.

Какая марка бетона для ленточного фундамента применяется

Перед тем как начать заливать монолит, необходимо задаться вопросом: какая марка бетона для ленточного фундамента наиболее оптимальна. Этот параметр зависит от нескольких факторов:

  • вес всего сооружения;
  • наличие дополнительных нагрузок на основание;
  • какое армирование применяется;
  • тип грунта;
  • климатические условия местности.

Шаг 5: Приготовление цементного раствора для ленточного фундамента с помощью бетономешалки

Для устройства бетонной подушки под основной фундамент вполне будет достаточно марки М100. Под легкие конструкции: щитовые дома, бани и хозпостройки подойдет М200. Строительство деревянного дома или строения из легких блоков требует использование марки М250. Для массивных сооружений и зданий готовится высококачественный бетон марки М350, с прочностью в 327 кг/см². Более высокие марки бетона применяются для строительства геометрически сложных сооружений и на стройках в регионах с суровым климатом. Зная эти характеристики, каждый для себя может определить: какая марка бетона для ленточного фундамента необходима.

Укладка арматуры и заливка фундамента

Определившись с маркой бетона, необходимо подготовить все необходимое под заливку. Некоторые заказывают готовый бетон в специализированных фирмах. Большинство людей самостоятельно готовят раствор. Для этого желательно иметь бетономешалку. В ней смешиваются все компоненты. Их пропорция зависит от того, какая марка бетона для ленточного фундамента была выбрана.

Шаг 6: Армирование ленточного фундамента

На дно траншеи по всему периметру укладывается стальная конструкция, сваренная из прутов арматуры. Чем больше таких прутов используется и чем они толще, тем прочнее будет весь фундамент.

Приготовленный бетон заливается в траншею и опалубку до уровневой отметки и разравнивается, так чтобы его поверхность была строго горизонтальной и ровной.

Шаг 7: Заливка приготовленного бетона в траншею для ленточного фундамента

Полезный совет! При заливке фундаментов большого объема необходимо использовать специальные вибраторы, которые заглубляются в толщу бетона. Они выгоняют воздушные пузырьки, делая монолит более однородным и прочным.

Шаг 8: Обеспечение гидроизоляции фундамента обмазочными материалами

После полной готовности фундамента необходимо обеспечить гидроизоляцию его стен обмазочными материалами. Правильно выполненный фундамент даст долгую и надежную эксплуатацию любого объекта.

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

схемы, расчет диаметра арматуры, расположение по углам и в подошве

Ленточный фундамент имеет нестандартную геометрию: его длинна в десятки раз больше глубины и ширины. Из-за такой конструкции почти все нагрузки распределяются вдоль ленты. Самостоятельно бетонный камень не может компенсировать эти нагрузки: его прочности на изгиб недостаточно. Для придания конструкции повышенной прочности используют не просто бетон, а железобетон — это бетонный камень с расположенными внутри стальными элементами — стальной арматурой. Процесс закладки металла называется армированием ленточного фундамента. Своими руками его сделать несложно, расчет элементарный, схемы известны. 

Количество, расположение, диаметры и сорт арматуры — все это должно быть прописано в проекте. Эти параметры зависят от многих факторов: как от геологической обстановки на участке, так и от массы возводимого здания. Если вы хотите иметь гарантированно прочный фундамент — требуется проект. С другой стороны, если вы строите небольшое здание, можно попробовать на основании общих рекомендаций все сделать своими руками, в том числе и спроектировать схему армирования.

Содержание статьи

Схема армирования

Расположение арматуры в ленточном фундаменте в поперечном сечении представляет собой прямоугольник. И этому есть простое объяснение: такая схема работает лучше всего.

Армирование ленточного фундамента при высоте ленты не более 60-70 см

На ленточный фундамент действуют две основные силы: снизу при морозе давят силы пучения, сверху — нагрузка от дома. Середина ленты при этом почти не нагружается. Чтобы компенсировать действие этих двух сил обычно делают два пояса рабочей арматуры: сверху и снизу. Для мелко- и средне- заглубленных фундаментов (глубиной до 100 см) этого достаточно. Для лент глубокого заложения требуется уже 3 пояса: слишком большая высота требует усиления.

О глубине заложения фундамента прочесть можно тут.

Для большинства ленточных фундаментов армирование выглядит именно так

Чтобы рабочая арматура находилась в нужном месте, ее определенным образом закрепляют. И делают это при помощи более тонких стальных прутьев. Они в работе не участвуют, только удерживают рабочую арматуру в определенном положении — создают конструкцию, потому и называется этот тип арматуры конструкционным.

Для ускорения работы при вязке арматурного пояса используют хомуты

Как видно на схеме армирования ленточного фундамента, продольные прутки арматуры (рабочие) перевязываются горизонтальными и вертикальными подпорками. Часто их делают в виде замкнутого контура — хомута. С ними работать проще и быстрее, а конструкция получается более надежной.

Какая арматура нужна

Для ленточного фундамента используют два типа прутка. Для продольных, которые несут основную нагрузку, требуется класс АII или AIII. Причем профиль — обязательно ребристый: он лучше сцепляется с бетоном и нормально передает нагрузку. Для конструкционных перемычек берут более дешевую арматуру: гладкую первого класса АI, толщиной 6-8 мм.

В последнее время появилась на рынке стеклопластиковая арматура. По заверениям производителей она имеет лучшие прочностные характеристики и более долговечна. Но использовать ее в фундаментах жилых зданий многие проектировщики не рекомендуют. По нормативам это должен быть железобетон. Характеристики этого материала давно известны и просчитаны, разработаны специальные профили арматуры, которые способствуют тому, что металл и бетон соединяются в единую монолитную конструкцию.

Классы арматуры и ее диаметры

Как поведет себя бетон в паре со стеклопластиком, насколько прочно такая арматура будет сцепляться с бетоном, насколько успешно эта пара будет сопротивляться нагрузкам — все это неизвестно и не изучено. Если хотите экспериментировать — пожалуйста, используйте стекловолокно. Нет — берите железную арматуру.

Расчет армирования ленточного фундамента своими руками

Любые строительные работы нормируются ГОСТами или СНиПами. Армирование — не исключение. Оно регламентируется СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В этом документе указывается минимальное количество требуемой арматуры: оно должно быть не менее 0,1% от площади поперечного сечения фундамента.

Определение толщины арматуры

Так как ленточный фундамент в разрезе имеет форму прямоугольника, то площадь сечения находится перемножением длин его сторон. Если лента имеет глубину 80 см и ширину 30 см, то площадь будет 80 см*30 см = 2400 см2.

Теперь нужно найти общую площадь арматуры. По СНиПу она должна быть не менее 0,1%. Для данного примера это 2,8 см2. Теперь методом подбора определим, диаметр прутков и их количество.

Цитаты из СНиПа, которые относятся к армированию (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Например, планируем использовать арматуру диаметром 12 мм. Площадь ее поперечного сечения 1.13 см2 (вычисляется по формуле площади окружности). Получается, чтобы обеспечить рекомендации (2,8 см2)  нам понадобится три прутка (или говорят еще «нитки»), так как двух явно мало: 1,13 * 3 = 3,39 см2, а это больше чем 2,8 см2, которые рекомендует СНиП. Но три нитки на два пояса разделить не получится, а нагрузка будет и с той и с другой стороны значительной. Потому укладывают четыре, закладывая солидный запас прочности.

Чтобы не закапывать лишние деньги в землю, можно попробовать уменьшить диаметр арматуры: рассчитать под 10 мм. Площадь этого прутка 0,79 см2. Если умножить на 4 (минимальное количество прутков рабочей арматуры для ленточного каркаса), получим 3,16 см2, чего тоже хватает с запасом. Так что для данного варианта ленточного фундамента можно использовать ребристую арматуру II класса диаметром 10 мм.

Армирование ленточного фундамента под коттедж проводят с использованием прутков с разным типом профиля

Как рассчитать толщину продольной арматуры для ленточного фундамента разобрались, нужно определить, с каким шагом устанавливать вертикальные и горизонтальные перемычки.

Шаг установки

Для всех этих параметров тоже есть методики и формулы. Но для небольших строений поступают проще. По рекомендациям стандарта расстояние между горизонтальными ветками не должно быть больше 40 см. На этот параметр и ориентируются.

Как определить на каком расстоянии укладывать арматуру? Чтобы сталь не подвергалась коррозии, она должна находится в толще бетона. Минимальное расстояние от края — 5 см. Исходя из этого, и рассчитывают расстояние между прутками: и по вертикали и по горизонтали оно на 10 см меньше габаритов ленты. Если ширина фундамента 45 см, получается, что между двумя нитками будет расстояние 35 см (45 см — 10 см = 35 см), что соответствует нормативу (меньше 40 см).

Шаг армирования ленточного фундамента — это расстояние между двумя продольными прутками

Если лента у нас 80*30 см, то продольная арматура находится одна от другой на расстоянии 20 см (30 см — 10 см). Так как для фундаментов среднего заложения (высотой до 80 см) требуется два пояса армирования, то один пояс от другого располагается на высоте 70 см (80 см — 10 см).

Теперь о том, как часто ставить перемычки. Этот норматив тоже есть в СНиПе: шаг установки вертикальных и горизонтальных перевязок должен быть не более 300 мм.

Все. Армирование ленточного фундамента своими руками рассчитали. Но учтите, что ни масса дома, ни геологические условия не учитывались.  Мы основывались на том, что на этих параметрах основывались при определении размеров ленты.

Армирование углов

В конструкции ленточного фундамента самое слабое место — углы и примыкание простенков. В этих местах соединяются нагрузки от разных стен. Чтобы они успешно перераспределялись, необходимо арматуру грамотно перевязать. Просто соединить ее неправильно: такой способ не обеспечит передачу нагрузки. В результате через какое-то время в ленточном фундаменте появятся трещины.

Правильная схема армирования углов: используются или сгоны — Г-образные хомуты, или продольные нитки делают длиннее на 60-70 см и загибают за угол

Чтобы избежать такой ситуации, при армировании углов используют специальные схемы: пруток с одной стороны загибают на другую. Этот «захлест» должен быть не менее 60-70 см. Если длины продольного прутка на загиб не хватает, используют Г-образные хомуты со сторонами тоже не менее 60-70 см. Схемы их расположения и крепления арматуры приведены на фото ниже.

По такому же принципу армируются примыкания простенков. Также желательно арматуру брать с запасом и загибать. Также возможно использование Г-образных хомутов.

Схема армирования примыкания стен в ленточном фундаменте (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Обратите внимание: в обоих случаях, в углах шаг установки поперечных перемычек уменьшен в два раза. В этих местах они уже становятся рабочими — участвуют в перераспределении нагрузки.

Армирование подошвы ленточного фундамента

На грунтах с не очень высокой несущей способностью, на пучнистых почвах или под тяжелые дома, часто ленточные фундаменты делают с подошвой. Она передает нагрузку на большую площадь, что придает большую стабильность фундаменту и уменьшает величину просадок.

Чтобы подошва от давления не развалилась, ее также необходимо армировать. На рисунке представлены два варианта: один и два пояса продольной арматуры. Если грунты сложные, с сильной склонностью к зимнему печению, то можно укладывать два пояса. При нормальных и среднепучнистых грунтах — достаточно одного.

Уложенные в длину пруты арматуры являются рабочими. Их, как и для ленты, берут второго или третьего класса. Располагаются друг от друга они на расстоянии 200-300 мм. Соединяются  при помощи коротких отрезков прутка.

Два способа армирования подошвы ленточного фундамента: слева для оснований с нормальной несущей способностью, справа — для не очень надежных грунтов

Если подошва неширокая (жесткая схема), то поперечные отрезки — конструктивные, в распределении нагрузки не участвуют. Тогда их делают диаметром 6-8 мм, загибают на концах так, чтобы они охватывали крайние прутки. Привязывают ко всем при помощи вязальной проволоки.

Ели подошва широкая (гибкая схема), поперечная арматура в подошве тоже является рабочей. Она сопротивляется попыткам грунта «схлопнуть» ее. Потому в этом варианте подошвы используют ребристую арматуру того же диаметра и класса, что и продольную.

Сколько нужно прутка

Разработав схему армирования ленточного фундамента, вы знаете, сколько продольных элементов вам необходимо. Они укладываются по всему периметру и под стенами. Длинна ленты будет длиной одного прутка для армирования. Умножив ее на количество ниток, получите необходимую длину рабочей арматуры. Затем к полученной цифре добавляете 20%  — запас на стыки и «перехлесты». Вот столько в метрах вам и нужно будет рабочей арматуры.

Считаете по схеме сколько продольных ниток, потом высчитываете сколько необходимо конструктивного прутка

Теперь нужно посчитать количество конструктивной арматуры. Считаете, сколько поперечных перемычек должно быть: длину ленты делите на шаг установки (300 мм или 0,3 м, если следовать рекомендациям СНиПа). Затем подсчитываете, сколько уходит на изготовление одной перемычки (ширину арматурного каркаса складываете с высотой и удваиваете). Полученную цифру умножаете на количество перемычек. К результату добавляете тоже 20% (на соединения). Это будет количество конструктивной арматуры для армирования ленточного фундамента.

По похожему принципу считаете количество, которое необходимо для армирования подошвы. Сложив все вместе, вы узнаете, сколько арматуры нужно на фундамент.

О выборе марки бетона для фундамента прочесть можно тут. 

Технологии сборки арматуры для ленточного фундамента

Армирование ленточного фундамента своими руками начинается после установки опалубки. Есть два варианта:

Оба вариант неидеальны и каждый решает, как ему будет легче. При работе непосредственно в траншее, нужно знать порядок действий:

  • Первыми укладывают продольные прутки нижнего армопояса. Их нужно приподнять на 5 см от края бетона. Лучше использовать для этого специальные ножки, но у застройщиков популярны куски кирпичей. От стенок опалубки арматура также отстоит на 5 см.
  • Используя поперечные куски конструкционной арматуры или сформованные контура, их фиксируют на необходимом расстоянии при помощи вязальной проволоки и крючка или вязального пистолета.
  • Далее есть два варианта:
    • Если использовались сформованные в виде прямоугольников контура, сразу к ним вверху привязывают верхний пояс.
    • Если при монтаже используют нарезанные куски для поперечных перемычек и вертикальных стоек, то следующий шаг — подвязывание вертикальных стоек. После того как все они привязаны, привязывают второй пояс продольной арматуры.

Есть еще одна технология армирования ленточного фундамента. Каркас получается жесткий, но идет большой расход прутка на вертикальные стойки: их забивают в грунт.

Вторая технология армирования ленточного фундамента — сначала вбивают вертикальные стойки, к ним привязывают продольные нитки, а потом все соединяют поперечными
  • Сначала вбивают вертикальные стойки в углах ленты и местах соединения горизонтальных прутков. Стойки должны иметь большой диаметр 16-20 мм. Их выставляют на расстоянии не менее 5 см от края опалубки, выверяя горизонтальность и вертикальность, забивают в грунт на 2 метра.
  • Затем забивают вертикальные прутки расчетного диаметра. Шаг установки мы определили: 300 мм, в углах и в местах примыкания простенков в два раза меньше — 150 мм.
  • К стойкам привязывают продольные нитки нижнего пояса армирования.
  • В местах пересечения стоек и продольных арматурин привязываются горизонтальные перемычки.
  • Подвязывается верхний пояс армирования, который располагается на 5-7 см ниже верхней поверхности бетона.
  • Привязываются горизонтальные перемычки.

Удобнее и быстрее  всего делать армирующий пояс с использованием сформованных заранее контуров. Прут сгибают, формируя прямоугольник с заданными параметрами. Вся проблема в том, что их необходимо делать одинаковыми, с минимальными отклонениями. И требуется их большое количество. Но потом работа в траншее движется быстрее.

Армирующий пояс можно вязать отдельно, а потом установить в опалубку и связать в единое целое уже на месте

Как видите, армирование ленточного фундамента — длительный и не самый простой процесс. Но справиться можно даже одному, без помощников. Потребуется, правда, много времени. Вдвоем или втроем работать сподручнее: и прутки переносить, и выставлять их.

Как армировать ленточный фундамент своими руками: инструкция

Армирование ленточного фундамента – процедура обязательная, без выполнения которой невозможно гарантировать качественное возведение будущей постройки. Работа по армированию фундамента очень важна, но в исполнении не очень сложна и если разобраться во всех тонкостях и нюансах, то сделать ее можно без проблем своими руками.

Материалы и инструмент

Для армирования ленточного фундамента используют, как стальные пруты, так и стеклопластиковую арматуру, мы остановимся на стальных прутах (как выбрать стальную арматуру читайте тут), потому как стеклопластик во – первых дорогое удовольствие, во – вторых его очень редко применяют для загородного домостроения по ряду причин.

Итак, с этим разобрались идем дальше, для работы нам нужно приобрести:

Материал Параметры
Рабочая арматура Диаметром 12мм.
Конструктивная арматура Диаметром 8мм.
Вязальная проволока Предназначенная для армирования
Цемент Марки М – 250, 300.
Песок Средней фракции

 

Из инструментов подготовим:

  • Емкость для замешивания бетона или бетономешалку;
  • Строительный миксер;
  • Болгарку;
  • Лопату;
  • Плоскогубцы;
  • Перчатки.

Подготовительные работы

Первое: Нужно рассчитать и приобрести арматуру и вязальную проволоку. В расчете необходимого количества арматуры нет ничего сложного. Горизонтальные направляющие, для которых используется арматура 12мм, обычно укладывается с шагом 30 – 60 см. Поперечные и вертикальные секций формируются арматурой 8мм, с шагом 40 – 70см. Зная эти данные очень легко прикинуть сколько погонных метров арматуры необходимо купить именно для ваших целей, плюс берите небольшой задел и приобретайте на 10% больше чем вам надо.

Важно: Для ленты высотой меньше 90 см обычно используется двухрядный каркас, при высоте более 90 см вяжется трех и более ярусный каркас.

Насчет вязальной проволоки все еще проще, ее на каждое соединение уходит примерно 25 – 30см.

Второе: После того, как материал доставили на место строительства, его нужно тщательно осмотреть и очистить от грязи и ржавчины. Многие данной операцией пренебрегают, но нужно помнить, что посторонние «включения» могут хоть несущественно, а все же ухудшить рабочие характеристики бетона.

Пошаговая инструкция по армированию ленточного фундамента

Шаг 1: Формируем бетонное основание. Для этого на дно траншеи, толщиной 20 -30 см насыпаем песок, трамбуем его и заливаем бетоном слоем 5 – 10см. Так мы защитим нижнюю арматуру от появления коррозии.

Совет: в целях экономии можно не «заморачиваться» с заливкой «подошвы», а гидроизолировать траншею обыкновенной плотной полиэтиленовой пленкой.

Шаг 2: Устанавливаем опалубку. На этом этапе останавливаться не будем потому, как у нас есть статья на тему «как поставить опалубку для фундамента», где все подробнейше расписано.

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

class=”eliad”>

Шаг 3: Начинаем вязать арматуру. Проделать данную работу можно, как непосредственно в траншее, так и рядом с ней. Удобнее конечно же связать отдельные секции недалеко от места монтажа, а потом установить их в положенное место. Общая схема будет следующей.

Важно: Сварку для соединения арматуры между собой применять крайне не рекомендуется, при таком способе крепления места стыков очень быстро начнут ржаветь. 

Сборку конструкции следует начинать с нижних поперечных прутов (8мм), их выкладываем с шагом не более 80см друг от друга. Затем на них продольно укладываем рабочую арматуру (12мм), расстояние между продольными прутами не должно превышать 40 см, если же оно больше 40 см, то добавляем в конструкцию еще один стержень. Места соединений поперечных и продольных прутьев закрепляем вязальной проволокой.

Итак, ранее мы сформировали нижний уровень каркаса, далее следует закрепить вертикальные перемычки (8мм). Делается это так – в местах соприкосновения продольных и поперечных прутьев арматуры устанавливаем вертикально еще один прут и связываем его проволокой с основной конструкцией, таким образом производим монтаж всех необходимых вертикальных элементов.

Важно: Будьте внимательны и при установке следите чтобы вертикальная арматура была закреплена по отношению к продольной четко под 90 градусов.

Следующим этапом сборки каркаса будет установка верхних поперечных и продольных прутьев. Все действия те – же, к вертикально закрепленной арматуре с помощью вязальной проволоки с перехлестом по краям не менее 20см, крепим сначала поперечные, а затем продольные элементы арматуры.

Способом, описанным выше собираем необходимое количество секций, устанавливаем их в траншею если сборка проводилась не в ней и с помощью дистансеров жестко закрепляем каркас по отношению к опалубке, зазор между ними оставляем в 3 -5 см.

Основная часть работ на этом закончена, но остался самый важный этап, армирование ленточного фундамента по углам.

Шаг 4: Крепление арматуры по углам. Здесь нужно быть предельно внимательными и сделать работу максимально качественно, потому как углы фундамента принимают на себя наибольшее концентрированное напряжение. Для армирования фундамента по углам применяют П или Г- образные техники усиления. Как правильно сделать данную работу смотрите ниже.

Для прямых углов:

Для углов больше 160 градусов:

Ну и перекрестия армируются так:

Все на этом работа закончена, удачного вам строительства.

Видео:

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

class=”eliad”>

Армирование ленточного фундамента: схемы армирования, ошибки

Ленточный фундамент можно назвать одним из самых распространенных типов оснований под возведение малоэтажных зданий и сооружений: частных и дачных домов, бань, беседок, заборов, складских помещений, гаражей, сараев, мастерских и времянок.

СодержаниеСвернуть

Учитывая высокие механические нагрузки на бетонную конструкцию фундамента зданий и сооружений, зачастую очень важно выполнять правильное армирование ленточного фундамента, которое эффективно защищает основание сооружения от воздействия разрушающих продольных и изгибающих механических напряжений.

Армирование под ленточный фундамент

Ленточный фундамент представляет собой замкнутую бетонную конструкцию, заливаемую в предварительно подготовленную траншею. В общем случае, на строительном участке, при помощи колышков и бечевки, в соответствии с имеющимся проектом, размечаются наружные и внутренние «обводы» будущего сооружения.

При этом имеющийся рабочий проект здания регламентирует ширину, глубину заделки и схему армирования ленточного фундамента конкретного здания или сооружения. Если здание возводится без проекта, правильное армирование ленточного фундамента будет рассмотрено дальше по тексту публикации.

Итак, габариты будущего фундамента и глубина его заделки известны по проекту либо по сведениям, полученным от заказчика. Далее следует операция рытья траншеи под конструкцию фундамента, и если по условиям строительства, фундамент возвышается над «нулевым уровнем» необходима установка опалубки. В том случае, если планируемая высота фундамента не выходит за габариты «нулевой» точки (уровня почвы), функцию опалубки выполняют стенки траншеи.

Стоит отметить, что практика возведения одноэтажных жилых домов позволяет использовать прямую заливку ленточного фундамента тяжелым бетоном марки М200-М250, без дополнительных затрат на армирование. В этом варианте дополнительное армирование ленточного фундамента арматурой можно назвать полезной, но не жизненно необходимой и более того – весьма затратной операцией.

схема армирования ленточного фундамента

Несмотря на многочисленные публикации в интернете рекомендующие производить арматурное усиление основание основы здания, одноэтажные частные дома, возведенные из кирпича, самана, пеноблока, массива древесины, тяжелого бетона и СИП панелей строятся на ленточных фундаментах без необходимости обустройства арматурного пояса в толще фундамента.

Правильное армирование углов ленточного фундамента

Частные здания выше одного этажа характеризуются значительной массой, давящей на основание сооружения. Многоэтажные частные дома и сооружения нуждаются в усиленном фундаменте. Под понятием «усиленный фундамент» имеется ввиду фундамент усиленный поясом стального армирования.

Пояс армирования фундамента частного дома проектируется и монтируется в соответствии с конкретными условиями эксплуатации и этажностью конструкции. При этом существуют эмпирические зависимости проверенные годами эксплуатации частных зданий.

В общем случае, в углах строящегося фундамента двух-трех этажного здания, количество вертикальных армирующих стержней увеличивается в два или три раза. К примеру, если «трассовое» армирование ленточного фундамента шириной 500 миллиметров предусматривает количество вертикальных стержней 2 единицы на 70-80 см протяженности фундамента в продольном направлении, то в углах конструкции должно быть не менее 6-ти равномерно расположенных вертикальных стержней, к которым привязываются четыре продольных стержня.

Дело в том, что углы здания воспринимают значительные разнонаправленные механические нагрузки. Поэтому их усиливают не только армированием фундамента, но и в том числе специальной усиленной кладкой основных строительных материалов.

Если не сделать усиленное армирование углов ленточного фундамента, можно получить просадку углов дома, которую невозможно исправить. Указанная выше схема армирования углов ленточного фундамента перекрывает 90% конструкций возводимых малоэтажных зданий высотой два-три этажа.

Армирование ленточного фундамента своими руками

Вне всякого сомнения, частные застройщики, привыкшие все, что только возможно делать своими руками, задают вопрос: «Как сделать армирование ленточного фундамента без привлечения наемных работников?».

Чтобы не ошибиться, в расчете, необходимо взять листок бумаги и сделать нехитрый чертеж схемы армирования ленточного фундамента используя конкретные габариты конструкции.

На листке бумаги следует обозначить наружные и внутренние обводы будущего сооружения.

Далее, реперными точками обозначают вертикальные стержни армирования в углах и «трассе» стен в соответствии со стандартными расстояниями: два перпендикулярно расположенных стержня на трассе 80 см между стержнями, и не менее 6-ти равномерно расположенных арматуры в каждом углу возводимого здания.

Как показывает практика возведения малоэтажных зданий, оптимальный вариант арматуры, для усиления фундамента, являются стальные горячекатаные стержни диаметром 8 мм по ГОСТ 5781-82.

При наличии у застройщика стальных стержней общепромышленного направления указанного диаметра, допускается использование любого металла способного придать бетонному фундаменту прочность соответствующую нагрузке о т стен, кровли и других конструкций.

В общем, случае традиционная схема армирования заглубленного ленточного фундамента выполненная собственными силами, предусматривает забивку вертикальных стрежней в грунт. Отступив от наружной стенки траншеи фундамента на расстояние 70-80 мм, с помощью кувалды забивается первый вертикальный стержень армпояса.

Второй стержень забивается напротив первого стержня, отступив 70-80 мм от внутренней стенки траншеи фундамента. Забивка стержней ведется на глубину до 400 мм.

Последующие вертикальные стержни забиваются с шагом 80-100 мм периметру будущего фундамента. Как уже было сказано, в углах будущей конструкции количество вертикально-забитых стержней увеличивают до 6 на каждый угол. Только так можно гарантировать прочный поперечный и продольный результат.

Итак, вертикальные армирующие стержни забиты в грунт на определенную надежную глубину. Следующая операция, это перевязка вертикальных стержней продольной арматурой диаметром 6-8 мм. Суть технологии заключается в следующем.

Отступив от дна траншеи фундамента на 150-200 вверх, к стержням забитым в землю, по всему периметру траншеи фундамента, с помощью отожженной проволоки привязываются продольные арматурные стержни диметром 8-12 мм.

Второй пояс продольной арматуры привязывается, отступив от нулевой точки фундамента на расстояние 400-450 мм. Монтаж продольной арматуры второго пояса также ведется с помощью отожженной стальной вязальной проволоки.

Заключение

Армирование фундамента малоэтажного здания можно назвать «желательной» но не жизненно необходимой операцией. Тяжелый бетон, используемый в качестве основного строительного материала для возведения фундаментов способен выдерживать значительные статические и динамические нагрузки без дополнительного армирования.

Поэтому в каждом конкретном случае возведения здания и сооружения следует руководствоваться инженерными расчетами армирования и других фактор возведения сооружения.

Ленточный фундамент – Designing Buildings Wiki

Фундаменты служат опорой для конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки.

В широком смысле фундаменты можно разделить на мелкие и глубокие. Фундаменты мелкого заложения обычно используются там, где нагрузки, создаваемые конструкцией, невелики по сравнению с несущей способностью поверхностных грунтов. Глубокие фундаменты необходимы там, где несущая способность поверхностных грунтов недостаточна для выдерживания нагрузок, создаваемых конструкцией, и поэтому их необходимо переносить на более глубокие слои с более высокой несущей способностью.

Ленточный фундамент (или ленточный фундамент) – это тип неглубокого фундамента, который используется для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн. в центре над ними.

Ленточный фундамент можно использовать для большинства грунтов, но он больше всего подходит для грунта с относительно хорошей несущей способностью. Они особенно подходят для легких структурных нагрузок, таких как многие малоэтажные и средние жилые дома, где можно использовать ленточный фундамент из массивного бетона .В других ситуациях может потребоваться железобетон.

Старые здания могут иметь ленточный фундамент из кирпича.

В широком смысле размер и положение ленточных фундаментов обычно связаны с общей шириной стены. Глубина традиционного ленточного фундамента обычно равна или больше общей ширины стены, а ширина фундамента обычно в три раза превышает ширину поддерживаемой стены. В результате нагрузка передается под углом 45 ° от основания стены к грунту.

Утвержденный документ A Строительных норм определяет минимальную ширину ленточных фундаментов в зависимости от типа грунта и несущей стены, хотя обычно рекомендуется проконсультироваться с инженером-строителем при проектировании фундаментов.

Нижняя сторона ленточного фундамента должна быть достаточно глубокой, чтобы избежать воздействия мороза; например, не менее 450 мм, если они не опираются на скалу, и не менее 1 м на глинах с высокой усадкой.

Глубокие ленточные фундаменты могут потребоваться, если грунт с подходящей несущей способностью более глубокий.

Широкий ленточный фундамент может потребоваться, если грунт мягкий или имеет низкую несущую способность, чтобы распределить нагрузку на большую площадь. Широкий ленточный фундамент обычно требует армирования.

Там, где есть более высокие локальные нагрузки, например, колонны, можно использовать опорные основания. Для получения дополнительной информации см. Основания колодок.

Там, где грунтовые условия плохие, вероятна осадка, или там, где может быть нецелесообразно создавать отдельные ленточные или подушечные фундаменты для большого количества отдельных нагрузок, могут использоваться плоты.См. Фундаменты на плотах для получения дополнительной информации.

Если несущая способность грунтов на поверхности недостаточна для выдерживания нагрузок, создаваемых конструкцией, могут использоваться глубокие фундаменты, такие как свайные фундаменты. См. Свайные фундаменты для получения дополнительной информации.

В более крупных или более сложных зданиях может использоваться несколько различных типов фундаментов.

Дополнительное руководство доступно в BRE’s Простые основы для малоэтажного жилья: «практическое правило» дизайна.

5.Фундаменты – Строительные исследования

Функции

· Обеспечить ровную кровать, на которой строить.

· Для поддержки и передачи нагрузка здания на недра.

· Ограничить поселение.

· Чтобы закрепить здание.

Нагрузки, приложенные к фундаменту, могут быть:

· Собственные нагрузки = Вес дом

· Живые нагрузки = Вес мебель, снег и т. д.

· Ветровая нагрузка = вызванные напряжения по ветру –

Фундаменты следует брать на такую ​​глубину, чтобы позволяет избежать повреждений из-за движения грунта из-за морозного пучения, движения грунта и т. д. Нагрузка через фундамент всегда вызывает оседание, поскольку сжимает парус. под. Целью при выборе фундамента должно быть сохранение осадки минимум и постараться избежать неравного урегулирования.

При проектировании зданий и, с большей здания, в частности, инженер-строитель или инженер-строитель обычно проектирует основы.Инженер посетит объект, проведет расследование и проводить тесты, такие как тесты на просачивание, тесты уровня грунтовых вод, выкопать пробные ямы через определенные промежутки времени вокруг участка, чтобы определить характер почвы. Когда исследуя гораздо более крупные здания, инженер может глубоко проникнуть в измельчите с помощью специального шнекового сверла и извлеките образец почвы, который будет отправлено в лабораторию для анализа, который выявит его природу, несущий вместимость и т. д.

Затем инженер определит тип наиболее подходящего фундамента, размера фундамента, а также типа и размера арматуры и т. д.Инженер позволит иметь большой запас прочности в их технические характеристики. Когда здание несколько сотен или тысяч тонн груза размещается на площадке, где будет всегда должна быть определенная сумма урегулирования, этого следовало ожидать. Неравномерный, неравномерный или чрезмерный осадок, однако это неприемлемо и проявляется в наличии трещин в стены, щели между пешеходными дорожками и домом и т. д. Самые известные Пример разрушения фундамента – падающая башня Пизы в Италии.Исправительные работы, такие как «поддержка» для решения обрушение фундамента возможно в экстремальных обстоятельствах, но такая работа обычно выполняется специалистами, стоит очень дорого и обычно не экономически возможно в жилых домах.

Проблемы с почвой

Поселение в зданиях видео 1

Поселение в зданиях видео 2

Поселок

Поселение – это тенденция здания к погрузиться в землю.Это естественно во всех новостройках и будет происходить. медленно в течение многих лет. Пока здание равномерно оседает (все с такой же скоростью), вообще нет проблем. Дифференциальный расчет происходит, когда одна часть фундамента оседает с разной скоростью по сравнению с другой. Это может привести к растрескиванию здания и даже к разрушению фундамента. Трещины всегда будут расти в направлении области большей осадки.

· Разница в несущей способности

Если здание построено на базе, содержит разные типы грунта с разной несущей способностью, одна сторона здание может утонуть больше другого.

· Морозное пучение

Если Уровень грунтовых вод в местности особенно высок, в холодную погоду он может замерзнуть. Это заставляет почву расширяться вверх и создает подъемную силу на здание, известное как морозное пучение.

· Усадка почвы

Во время летом деревья впитывают влагу из почвы, вызывая ее сжатие или сокращаться. Это движение в почве может оставить фундамент без опоры, что приведет к растрескиванию и возможному разрушению фундамента.

· Расширение почвы

Если дерево возле здания (в пределах 30 м) вырублено, влажность почва увеличивается, вызывая расширение / вспучивание почвы.

· Фундамент перегрузка

Если на одной стороне здания размещается больший вес на фундаменты, чем другой, дифференциальная осадка может происходить. Это может быть вызвано:

-Изменения в здание, например снятие несущей стены перенесет дополнительную нагрузку на ближайшую стену.Фундамент ближайшей стены, возможно, не был рассчитан на дополнительную нагрузку.

-Дополнительная загрузка из-за непредвиденной живой или статической нагрузки, например вес книг в библиотеке.

Деревья

Во избежание усадки и набухания почву, деревья следует высаживать подальше от здания. Расстояние между дом и дерево должны быть равны полностью созревшей высоте дерева. В случаях, когда это невозможно, это может быть необходимо создать постоянную преграду между деревом и домом для черного бесплатные крыши.

Анкоридж
Обычно здание настолько тяжелое, что его вес удерживает его на месте, опираясь на земля. Для более высоких зданий, особенно небоскребов, их фундамент удерживает они были прикреплены к земле, не позволяя ветру опрокинуть их.

Проблемы проектирования

Ширина / пропорции
Фундамент работает за счет распределения веса стены на большей площади, чтобы уменьшить их общее воздействие на подпочву.Этот распределяет нагрузку на большую площадь. Давление = сила на единицу площади. Этот означает, что увеличение площади приводит к уменьшению силы, прилагаемой к почва. Традиционный ленточный фундамент всегда в три раза шире, чем общая ширина стены и глубина фундамента одинаковы толщина как стена.

Жесткость
Когда груз помещается на бетонную балку или фундамент, верхняя часть находится в сжатом состоянии. Нижняя половина находится в напряжении. Средняя часть нейтральна.Это называется нейтральной осью. Бетон слабый при растяжении и имеет тенденцию к растрескиванию в тех местах, где находится при растяжении. Для по этой причине бетонные балки и фундамент армируют сталью, сильный в напряжении. Чтобы получить лучший результат от армирования, следует помещается в зону растяжения. Арматурные стержни располагаются на 75 мм выше основание фундамента. Это гарантирует, что арматурные стержни имеют соответствующее покрытие. для предотвращения коррозии.

Материалы
Фундаменты изготавливаются из бетона, обычно 1 используется бетонная смесь:

· однокомпонентный цемент.

· мелкий агрегат с тремя портами (песок).

· шесть частей грубого заполнителя (гравий).

Удобоукладываемость смеси очень важный. По этой причине, а также по соображениям скорости и трудозатрат бетон не смешивается на объекте, а доставляется на объект грузовиком. Бетон насыпают в траншеи и выкладывают вручную. Затем его уплотняют и выравнивается механическим или ручным способом, т. е. стяжкой или линейкой. Это должно произойти до того, как бетон начнет схватываться.

Хардкор
Хардкор – это щебень, который используется в качестве несжимаемый «наполнитель» для компенсации удаления верхнего слоя почвы. В строительные нормы и правила гласят, что хардкор следует уплотнять слоями минимальная глубина 150 мм и максимальная глубина 225 мм. Чтобы предотвратить хардкор прокалывая радоновую мембрану, верхний слой засыпают слоем песка называется ослеплением.

Вибрация
При использовании бетона воздушные пустоты в смеси будут резко снизить прочность бетона.Бетон вибрирует использование удара или механической вибрации для удаления этих воздушных пустот.

Факторы влияющие на прочность бетона в фундаменте

· Неправильное размещение и / или калибровка арматуры.

· Фонд размещен на неправильная глубина, которая может привести к дальнейшему оседанию.

· Заливка фундамента неподходящие погодные условия, например, мороз (вода в бетон замерзнет перед схватыванием) или чрезмерно жаркой погоде (вода в перед схватыванием бетон испарится).

· Размещение блока на свежем плита, прежде чем она успеет застыть.

· Использование неподходящего водного цемента соотношение.

· Слишком много воздуха в смеси, вызвано недостаточной вибрацией / уплотнением бетона.

Фонды типы
Существует много типов конструкции фундаментов, используемых в современные постройки. Каждый фундамент должен быть рассчитан на конкретное здание, с учетом:

– загрузка здания.
– несущая способность почвы.
– стоимость.
– почвенно-температурный режим.

Основные типы фундаментов, используемых сегодня, могут относиться к категории:

в фундаменты ленточные.

Ленточный фундамент – самый распространенный тип фундамента, используемый для бытовых жилища. Ленточный фундамент – это фундамент, проходящий по всей длине. каждой несущей стены. Ленточный фундамент лучше всего подходит для ситуаций, когда:

· вес здания передается через несущие стены (в отличие от колонн).

· вес здания относительно низко.

· структурный дизайн постройка относительно проста.

Чертежи руководящих принципов строительства. Раздел B: Бетонные конструкции

Чертежи строительных норм. Раздел B: Бетонная конструкция

Раздел B: Бетонная конструкция

Введение | Раздел А | Раздел B | Раздел C | Раздел D | Раздел E | Раздел F | Раздел G
Загрузите файлы AutoCAD DWG (zip-архив): Раздел A | Раздел B | Раздел C | Разделы D-G

Рисунок B-1 : Допустимое расположение ленточных опор

Все наружные стены и внутренние несущие стены должны опираться на усиленные бетонные ленточные фундаменты.Внутренние стены могут поддерживаться за счет утолщения плиты под стены и соответствующим образом укрепить ее. Фундаменты обычно должны располагаться на слое. грунта или камня с хорошими несущими характеристиками. Такие почвы будут включать плотные пески, мергель, другие сыпучие материалы и жесткие глины.

Фундамент должен быть отлит не менее чем от 1 ’6 дюймов до 2’ 0 дюймов. под землей, его толщина не менее 9 дюймов и ширина не менее 24 дюймов, или как минимум в три раза больше ширины стены, непосредственно поддерживаемой им.Где в качестве несущего материала фундамента необходимо использовать глины, ширина подошвы должна быть увеличен до минимум 2 футов 6 дюймов.

Рисунок B-2 : Типовая деталь раздвижной опоры

Когда отдельные железобетонные колонны или колонны из бетонных блоков при использовании они должны поддерживаться квадратными опорами размером не менее 2–0 дюймов и 12 дюймов толщиной.Для опор колонн минимальное армирование должно быть ” стержни диаметром 6 дюймов по центрам в обоих направлениях, образующие ячейку 6 дюймов.

Рисунок B-3 : Армирование ленточных опор

Усиление фундамента необходимо для обеспечения непрерывности структура. Это особенно важно в случае плохого заземления или когда здание может быть подвержено землетрясениям.Предполагается, что армирование деформированные стальные прутки с высоким пределом текучести, которые обычно поставляются в OECS. Для полосы опор, минимальная арматура должна состоять из 2 стержней № 4 (“), размещенных продольно и поперечно расположенные стержни диаметром 12 дюймов.

Рисунок B-4 : Бетонный пол в деревянных домах

Рисунок B-5 : Фундамент из бетонной ленты и бетонное основание с Деревянное Строительство

Приемлемое устройство фундамента небольшого деревянного дома с бетонным или деревянным полом.Эта конструкция подходит для достаточно жесткие почвы или мергель. Там, где здание будет на скале, толщина опора может быть уменьшена, но деревянные постройки очень легкие и их легко сдуть. их основы. Поэтому здание должно быть надежно прикреплено болтами к бетонному основанию, и опоры должны быть достаточно тяжелыми, чтобы предотвратить подъем.

Рисунок B-6 : Типичные детали каменной кладки

Бетонные блоки, используемые в стенах, должны быть прочными, без трещин и их края должны быть прямыми и правильными.Номинальная ширина блоков для наружных стен и несущие внутренние стены должны быть не менее 6 дюймов, а торцевая оболочка должна быть минимальная толщина 1 дюйм. Наружные стены лучше построить толщиной 8 дюймов. бетонный блок. Ненесущие перегородки могут быть построены из блоков с номинальная толщина 4 дюйма или 6 дюймов. Стены из блоков должны быть усилены как вертикально и горизонтально; это должно выдерживать ураганы и землетрясения. это Обычная практика в большинстве OECS – использовать бетонные колонны на всех углах и перекрестки.Дверные и оконные косяки необходимо укрепить.

Рекомендуемая минимальная арматура для строительства бетонных блоков выглядит следующим образом:

    1. Прутки диаметром 4 дюйма по углам по вертикали.
    2. стержни диаметром 2 дюйма на стыках по вертикали.
    3. Прутки диаметром 2 дюйма на косяках дверей и окон
    4. для армирования горизонтальных стен используйте стержни Dur-o-waL (или аналогичные) или стержни. каждый второй курс следующим образом:
    5. блоки 4 дюйма 1 стержень
      Блоки 6 дюймов 2 стержня
      Блоки 8 дюймов 2 стержня

    6. Для вертикального армирования стен используйте стержни, расположенные следующим образом:
    7. 4-дюймовые блоки 32
      Блоки 6 дюймов 24
      Блоки 8 дюймов 16

Рисунок B-7 : Деталь бетонной колонны

Колонны должны иметь минимальные размеры 8 x 8 дюймов и могут быть образуется опалубкой с четырех сторон или опалубкой с двух сторон с блокировкой с двух других.Минимальная арматура колонны должна составлять стержни диаметром 4 с хомутом на Центры 6 дюймов. Колонна с заполненным сердечником или бетонная колонна должна быть высота до пояса (кольцевой балки) у каждого дверного косяка.

Рисунок B-8 : Альтернативные конструкции опор для блочной кладки

Эта железобетонная опора монолитно построена с плита перекрытия.Состоит из серии утолщений плит под стены с минимум 12 дюймов глубиной вниз по периметру. Основание полностью размещено на колодце. уплотненный гранулированный материал.

Рис. B-9: Деталь перекрытия перекрытия

Железобетонная плита перекрытия не выходит за пределы периметра. стены. Арматурная сетка в плите размещается сверху с 1-дюймовыми крышками.Плита сооружается на хорошо утрамбованном зернистом заполнителе, щебне или мергеле.

Рисунок B-10 : Альтернативная деталь перекрытия пола

Подвесная железобетонная плита привязана к внешней ограждающая балка на уровне пола. Важна верхняя (стальная) арматура. Главный арматура должна быть порядка “диаметра в 9” центрах, а распределительная сталь диаметром 3/8 дюйма с центрами 12 дюймов.

Рисунок B-11 : Деталь крепления направляющей Vernadah к колонне

Важно, чтобы направляющие были надежно закреплены в боковой части. столбец. Как минимум, болты должны быть оцинкованы для предотвращения коррозии. Для крепления балясин к бетону рекомендуется использовать эпоксидный раствор или химические анкеры. столбец.

Рисунок B-12 : Устройство армирования для подвесных перекрытий

Арматуру должны сгибать и закреплять опытные мастера.Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-13 : Устройство усиления для Подвесные балки

Арматуру должны сгибать и закреплять опытные мастера. Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-14 : Устройство усиления для Подвесные консольные балки

Арматуру должны сгибать и закреплять опытные мастера.Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-15 : Устройство усиления для Подвесная лестница

Введение | Раздел А | Раздел B | Раздел C | Раздел D | Раздел E | Раздел F | Раздел G


Системы фундамента и типы грунтов

Системы фундамента и типы грунта идут рука об руку, поскольку тип грунта, с которым вы сталкиваетесь на своем участке, определит лучшую систему фундамента, которую вы можете использовать для своего проекта.

Пренебрежение исследованием состояния грунта на вашем участке – одна из самых ранних и дорогостоящих ошибок, которые может сделать самостроитель.

Если вы еще не приобрели свой участок, ознакомьтесь с этим контрольным списком участка под застройку, чтобы убедиться, что вы проявляете должную осмотрительность в отношении различных факторов (включая тип почвы), прежде чем совершать покупку.

Вы можете обратиться к местным властям или строительному инспектору или провести исследование почвы. Исследование почвы может стоить всего 500 фунтов стерлингов, но позволит выявить любые серьезные проблемы до того, как вы начнете, что может сэкономить вам 1000 фунтов стерлингов.

Всегда полезно выделить не менее 10% вашего бюджета на резервный фонд, если вы столкнетесь с какими-либо непредвиденными проблемами с вашим типом почвы.

Здесь мы объясняем типы почвы, с которыми вы можете столкнуться, и систему фундамента, которую вам следует выбрать.

Готовы начать выкладку? Ознакомьтесь с этим пошаговым руководством по созданию фундамента.

Какие типы почв я могу найти на своем участке?

Если вы еще не знаете тип почвы на своем участке, хорошей отправной точкой является звонок в местный отдел управления строительством.Они могут дать вам представление о типичном типе почвы в районе, который вы строите, и о подходящем фундаменте.

Большинство местных властей выпускают информационные бюллетени о типовых решениях фундамента для различных типов почвы, обычно встречающихся в этом районе.

Еще одним полезным источником информации является Утвержденный строительными нормами документ A: 2004 , в котором перечислены семь типов почвы плюс условия недр и практические полевые испытания, которые помогут вам определить тип почвы.

Камень

Включает:

  • известняк
  • гранит
  • песчаник
  • сланец
  • твердый твердый мел

Эти породы обладают высокой несущей способностью. Камень, возможно, нужно просто очистить и выровнять для строительства.

Камень может быть непроницаемым, поэтому верхний слой почвы, вероятно, потребует дренажа, поскольку невозможно построить отстойники для удаления дождевой или поверхностной воды. Варианты дренажа вне сети также будут очень ограничены.

Мел

Если мел не слишком мягкий, ширина 450 мм для малоэтажных зданий обычно является приемлемой. Глубина фундамента должна быть ниже возможного воздействия мороза (700 мм). Если мел мягкий, его нужно раскапывать, пока мел не станет твердым.

Меловые почвы могут быть подвержены эрозии, поэтому будьте осторожны с ложбинами и пещерами.

Гравий и песок

Сухой плотный гравий или гравийно-песчаные грунты обычно подходят для ленточных фундаментов.Обычно допустима глубина 700 мм, если грунт имеет достаточную несущую способность.

Если уровень грунтовых вод высокий (т. Е. Гравий затоплен), несущая способность уменьшается вдвое, поэтому важно поддерживать фундамент как можно выше. Может подойти неглубокий, усиленный, широкий ленточный фундамент.

Песок достаточно хорошо удерживается вместе, когда он влажный, уплотненный и однородный, но траншеи могут обрушиться, и поэтому шпунтовые сваи часто используются для удержания грунта в траншеях до тех пор, пока бетон не будет залит.

Глина

Первый слой глины толщиной 900–1200 мм подвержен перемещению из-за расширения и усадки в зависимости от содержания влаги, поэтому обычно необходимо выкапывать фундамент на глубину, на которой содержание влаги в глине остается стабильным. . Британский стандарт 8004 рекомендует минимальную глубину для фундамента 1 м. Но если поблизости есть или были деревья, может потребоваться глубина до 3 м.

В глине перед бетонированием фундамента траншею часто защищают от вспучивания, выстилая ее сжимаемым слоем (напр.грамм. Глиняная доска).

Плотная глина поверх мягкой глины

Иногда приемлема традиционная ленточная основа, но важно не переборщить, поскольку это может увеличить нагрузку на более мягкую глину под ней. Распространенным решением является рытье фундаментов с широкими лентами со стальной арматурой, однако может потребоваться инженерный фундамент.

Торф

Торф и рыхлый переувлажненный песок являются очень бедными грунтами. Если торф можно счистить, найти подходящий несущий грунт не менее 1.Глубина 5м, может подойти ленточный фундамент. Скорее всего, потребуется усиленный плотный фундамент.

Засыпанный грунт

Если земля ранее выкапывалась и засыпалась, обычно необходимо копать до уровня ниже области засыпки.

Участки с уклоном

Участки с уклоном требуют ступенчатого фундамента. Инструкции приведены в Строительных правилах.

Мне нужно обследование почвы?

Исследования почвы могут оказаться очень полезными, но не являются обязательным условием.Большинство участков начинаются без формального исследования почвы, полагаясь вместо этого либо на знания проектировщика, либо на местный опыт строительного инспектора.

Процесс включает в себя вырытие ям в различных точках участка и экстраполяцию результатов по каждой яме, чтобы предположить состояние грунта на всем участке.

Типы фундаментных систем

Стандартная процедура состоит в том, чтобы поместить в траншеи как можно меньше твердого бетона, а затем застроить из него блочную кладку до уровня земли, где стены переключаются на кирпич или камень или что-то еще, что должно быть выбрано для внешней облицовки. быть.Он известен как ленточный фундамент .

Для одноэтажного здания ленточный фундамент обычно будет шириной 450 мм и глубиной не менее 200 мм, а для двух этажей шириной 600 мм и глубиной 200 мм.

Фундаменты с глубоким ленточным фундаментом: Если ленточный фундамент должен располагаться на более низком уровне, чтобы достичь почвы с подходящей несущей способностью, можно вырыть более широкую и глубокую траншею для работы, а ленточные фундаменты выкапывают и заливают на более низком уровне. Затем стены возводятся до уровня земли кладкой.

Фундамент с широким ленточным покрытием: Если грунт мягкий или имеет низкую несущую способность, можно использовать фундамент с широким ленточным покрытием для распределения нагрузки по большей площади, армированный сталью, чтобы снизить нагрузку на м².

Схемы ленточных фундаментов (слева) и фундаментов для засыпки траншей (Изображение предоставлено: Homebuilding & Renovating)

Широко используемой альтернативой является засыпка траншеи, при которой траншеи заполняются товарным бетоном чуть ниже уровня земли.В местах, близких к деревьям, можно добавить стальную арматуру. Хотя этот метод экономит труд, он увеличит общую стоимость вашего фундамента. Чуть выше уровня земли опоры покрывают влагонепроницаемым слоем, а затем закрепляют первый этаж.

По сравнению с глубокими ленточными фундаментами, засыпка траншеи сводит к минимуму ширину выемки, а также трудозатраты и материалы, необходимые для строительства кирпичной кладки ниже уровня земли, компенсируя стоимость дополнительного бетона.

( БОЛЬШЕ: Сколько будет стоить мой фундамент?)

Если у вас есть участок, на котором земля считается труднопроходимой, то стандартные ленточные или насыпные фундаменты вряд ли подойдут.Есть альтернативные варианты, но они значительно дороже.

Копание траншей глубже и заливка бетоном, а также, возможно, добавление листов полистирола рядом с траншеями в качестве скользящей мембраны может быть простым решением.

Но если вам нужно копать глубже 2,5 м, это решение становится непрактичным. Мало того, что количество бетона, необходимое для заполнения траншеи, станет непомерно дорогим, но работа на такой глубине может оказаться опасной.

Если участок требует глубокого фундамента более чем в паре мест, то теперь обычно используется другой подход, чаще всего свайное строительство, иногда с использованием бетонных плотов.

( БОЛЬШЕ: Фундаменты для сложных участков)

Что такое Фундаменты на плотах?

Как следует из названия, бетонный плот предназначен для «плавания» по земле под ним. Конструкция состоит из плиты перекрытия особой толщины, усиленной массами на стальной арматуре.Преимущество плотов заключается в том, что они служат основой для решения первого этажа, а не просто траншеями в стенах, но они считаются более сложными в строительстве.

Плот используется там, где почва требует такой большой площади подшипника, что широкие полосы фонды распространения слишком далеко, что делает его более экономичным, чтобы вылить один большой железобетонной плиты.

Плот – альтернатива свайному фундаменту, и он может быть дешевле (Изображение предоставлено: Homebuilding & Renovating)

Что такое свайный фундамент?

Некоторые застройщики теперь используют свайный фундамент на каждом участке, потому что затраты предсказуемы.Сваи забиваются в землю, затем заполняются бетоном, а весь фундамент покрывается грунтовой балкой для строительства.

Короткоствольные сваи и балка: Короткоствольные сваи обычно имеют длину 2–3 м и могут быть усилены сталью. Затем каждая свая соединяется наверху горизонтальной сборной железобетонной балкой. Затем подвесной железобетонный цокольный этаж можно построить из сборных элементов или отлить на месте.

Фрикционные сваи: Концепция, аналогичная короткоствольным сваям и балкам, используемым в ситуациях, когда на приемлемой глубине нет подходящего несущего слоя.Фрикционные сваи зависят от сопротивления кожи почве.

Короткоствольные сваи, как правило, имеют длину 2–3 м и могут быть усилены сталью (Изображение предоставлено: Homebuilding & Renovating)

Что такое опорные фундаменты?

Используется, когда необходимо поддержать изолированные нагрузки, например, для поддержки колонн стального или столбово-балочного каркасного дома. Нагрузка сосредоточена на небольшой площади.

( БОЛЬШЕ : Сколько стоит построить дом?)

Схема фундамента с подкладкой (Изображение предоставлено: Homebuilding & Renovating)

Что может повлиять на мой выбор системы фундамента?

Если фундамент затронут корнями деревьев (или их предыдущим удалением), вам может потребоваться использовать достаточно глубокую траншею, заполненную бетоном, но с сжимаемым материалом, с одной или обеих сторон внешних траншей, чтобы противодействовать любому поднятию или расширению. в земле.

Водопроводные трубы должны входить в здание на глубине не менее 750 мм, но не более 1,35 м под землей. Если это означает, что они проходят через бетонный фундамент, то их необходимо либо проложить перед заливкой, либо, что еще лучше, установить канал, чтобы их можно было протолкнуть позже.

Если канализационные трубы, выходящие из здания, должны быть глубже верхней части бетона фундамента, их также следует отводить; они не могут застрять в бетоне и должны иметь возможность свободно перемещаться.

Электричество и газ обычно не нужно подводить или устанавливать на этом этапе, поскольку они обычно устанавливаются на поверхность. Наконец, инспекторы по строительству и по гарантии должны будут утвердить выкопанный фундамент перед заливкой бетона.

( БОЛЬШЕ : Как подвести электричество к месту)

Проектирование фундаментов зданий

Проектирование фундаментов зданий

Проектирование фундаментов зданий

Основное назначение фундамента здания или другого сооружения – безопасная передача нагрузки на грунт.Собственная нагрузка на крышу, пол и несущие стены, а также действующая на эти элементы нагрузка передаются сначала на фундамент, а затем на слои грунта, поддерживающие здание. Чтобы обеспечить устойчивость и безопасность конструкции, безопасная несущая способность грунта должна быть больше, чем напряжение в грунте из-за нагрузки здания.
Для жилых, промышленных и коммерческих зданий используются несколько типов фундаментов, выбор конкретного типа зависит от таких факторов, как:

  • Форма строительства здания
  • Строительная нагрузка
  • Тип недр
  • Близость существующих построек, если таковые имеются.
  • Экономика

Самыми распространенными типами фундаментов для жилых и легких коммерческих зданий являются ленточный и блочный фундамент соответственно. В этом разделе будет обсуждаться конструкция этих двух фундаментов.
На рис. 4-1 показан узкий ленточный фундамент, представляющий собой длинную полосу бетона, поддерживающую стены малоэтажного жилого дома. Его также можно использовать для других построек, если факторы благоприятствуют такому выбору. От стены нагрузка распределяется на фундамент под углом 45 °, как показано на Рисунке Приложение7.1а. Плоскости, по которым распределяется нагрузка, называются плоскостями сдвига. Фундамент должен быть спроектирован таким образом, чтобы плоскости среза проходили через нижние углы полосы. Если расчетная ширина фундамента слишком велика, как в случае более слабых грунтов, обычная бетонная полоса может прогнуться и потрескаться, как показано на рисунке Приложение 7.1b. Бетон можно сделать более прочным при растяжении, обеспечив стальную арматуру в зоне растяжения.

Согласно СНиП конструкция ленточного фундамента должна удовлетворять следующим условиям *:
i) Выступы бетонной полосы по обе стороны от стены должны быть одинаковыми.
ii) Толщина бетонной полосы должна быть равна выступу (D = P) или 150 мм, в зависимости от того, что больше. Это означает, что минимальная толщина ленточного фундамента составляет 150 мм.
Пример 1:
Проектировать ленточный фундамент жилого дома с учетом следующих условий:
i) Стены представляют собой полые стенки толщиной 275 мм.
ii) Строительная нагрузка, включая статическую нагрузку на фундамент, составляет 40 кН / м.
iii) Безопасная несущая способность грунта 80 кН / м2
Решение:
Поскольку стены и фундамент очень длинные, расчеты основаны на длине стены / фундамента 1 м.Площадь фундамента можно определить по формуле:
Площадь фундамента здания =
= = 0,5 м2
Площадь ленточного фундамента = ширина × 1 м длина = 0,5 м2
Следовательно, ширина фундамента = 0,5 м2
Это минимальное требование.
Обычно используется фундамент шириной 600 мм. Каждая проекция будет:
(600 – 275) ÷ 2 = 162,5 мм
Плоскости сдвига нанесены под углом 45º из точек c и d, как показано на Рисунке App7.2, и вертикальные линии, проведенные из точек a и b. Эти линии пересекаются в точках e и f, которые соединяются для завершения проектирования фундамента.
Толщина бетонной полосы в этом случае составляет 162,5 мм, которую можно увеличить до 170 мм.
Подушечный фундамент
Падовый фундамент, также известный как изолированный фундамент, используется для колонн мало- и среднеэтажных каркасных зданий. Для легких конструкций можно использовать простой или железобетон, а для более тяжелых – железобетон.

Неармированные опорные площадки рассчитаны на то, чтобы в бетоне не возникало напряжения. Толщина определяется, как указано в конструкции ленточного фундамента. Номинальное армирование по-прежнему требуется для контроля термического растрескивания бетона.
Пример 2:
Разработайте подушечный фундамент для колонны 300 × 300 мм, выдерживающей нагрузку 500 кН. Безопасная несущая способность грунта – 200 кН / м2.
Решение:
Площадь подушечного фундамента =
= = 2.5 кв.м
Квадратная площадка обычно предусмотрена для квадратной колонны.
Сторона квадратной площадки = 1,6 м или 1600 мм
Толщина подушки может быть определена путем нанесения плоскостей сдвига под углом 45 °, как показано на рисунке Приложение7.3. Чтобы плоскости среза проходили через нижние углы подушки, толщина D должна быть равна выступу P.
Выступ P = (1600 – 300) ÷ 2 = 650 мм.
Толщина подушечного фундамента D = P = 650 мм.

* Выдержка воспроизведена из Строительных норм (2000 г.), Утвержденный документ A – Структура, Департамент по делам сообществ и местного самоуправления в соответствии с Лицензией открытого правительства v 1.0. Веб-сайт: www.nationalarchives.gov.uk

Источник: http://www.wiley.com/legacy/wileychi/virdi/supp/others/design_of_building_foundations.doc

Веб-сайт для посещения: http://www.wiley.com/

Автор текста: указан в исходном документе указанного текста

Если вы являетесь автором приведенного выше текста и не соглашаетесь делиться своими знаниями для обучения, исследований, стипендий (для добросовестного использования, как указано в авторских правах США), отправьте нам электронное письмо, и мы удалим ваши текст быстро.Добросовестное использование – это ограничение и исключение из исключительного права, предоставленного законом об авторском праве автору творческой работы. В законах США об авторском праве добросовестное использование – это доктрина, которая разрешает ограниченное использование материалов, защищенных авторским правом, без получения разрешения от правообладателей. Примеры добросовестного использования включают комментарии, поисковые системы, критику, новостные репортажи, исследования, обучение, архивирование библиотек и стипендии. Он предусматривает легальное, нелицензионное цитирование или включение материалов, защищенных авторским правом, в работы других авторов в соответствии с четырехфакторным балансирующим тестом.(источник: http://en.wikipedia.org/wiki/Fair_use)

Информация о медицине и здоровье, содержащаяся на сайте , носит общий характер и цель, которая носит исключительно информационный характер и по этой причине не может ни в коем случае заменять совет врача или квалифицированного лица, имеющего законную профессию.

Проектирование фундаментов зданий

Тексты являются собственностью соответствующих авторов, и мы благодарим их за предоставленную нам возможность бесплатно делиться среди студентов, преподавателей и пользователей Интернета, их тексты будут использоваться только в иллюстративных образовательных и научных целях.

Вся информация на нашем сайте предназначена для некоммерческих образовательных целей

Проектирование фундаментов зданий

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристики недр
  4. Выделенная стоимость фундаменты

Поэтому решить о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, чем меньше и меньше, и так далее.

  1. Здание выдержало ожидаемая осадка по данному типу фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и при разумных пределах не обнаруживается несущего пласта. глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

а также Дп будет равно нулю.Это означает, что несущая способность под здания меньше, чем (q a ), и ожидаемое поселение теоретически равно нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие – это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых геологоразведочные работы доказывают, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора – это увеличение основания колонны или стены с целью распределения нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Есть разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированная опора колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания расположены близко друг к другу , другая их опоры перекрывают друг друга

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и его можно не заметить.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Собственная нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, кодексы практики позволяют снижение интенсивности динамической нагрузки. Согласно египетскому кодексу На практике допускается следующее снижение временной нагрузки:

или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 rd этаж 20,0%

4 этаж 30,0%

5 -й этаж и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких оснований на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под фундаментом, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент надежности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: –

Виды напряжений

условное обозначение

Допустимые напряжения в кг / см 2

Сила куба

ж у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

q 1

q 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение сцепления рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину д г , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше имеющегося d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел находится на полпути между краем опорной плиты и перед лицом столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это необходимо передать часть нагрузки, которую несет стальная колонна, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. С Рис.11:

где f s – фактическое напряжение стали

5- Обычная бетонная опора под R.C. Опора

Распространенной практикой является размещение ровный бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от ее толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полоску железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров в длину стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных прутков меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Чтобы предотвратить растрескивание из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент – используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика проектирования опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см где b c – сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент будет рассчитан в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика проектирования прямоугольных опор

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические сечения сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

, где S = отношение длинной стороны к короткой сторона, L / B.

САМЕЛЛЫ

Одиночные опоры должны быть связаны вместе пучками, известными как семеллы, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле выполнен в виде неразрезной железобетонной прямоугольной балки. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться силам сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равным усилением A s .

Верх уровень семеллы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше, чем уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня цокольного этажа

Опоры подвергаются воздействию момента

Введение

Многие основы сопротивляются в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной к центру основание. Примеры основ, которые должны противостоять моменту, – это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, Раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами середины

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на Рис.21-.c. Для в эксцентриситет е > L / 6 с участием относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б – Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму – методом проб и ошибок следующим образом:

1- Находить давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура – нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор – это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на Рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними в обоих направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами или другие соображения ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжения на дне основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами фундамента установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, включающая столбцы, является наиболее эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина не равна точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значений сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: –

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения результирующего R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + От 5 до 8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующего:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: –

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент – кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 и 2 (Рис.33) действуют в центре тяжести опор.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 предполагает жесткую вращение тела; таким образом, если ремень не может передать эксцентрик момент из столбца 1 без вращения, решение не действует.Избежать рекомендуется вращение внешней опоры.

I ремень / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика проектирования опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка, нагруженная вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет прекращено там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если нужно.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передают реакцию R 1 равномерно по длине L 1 Таким образом достигается желаемое равномерное давление на почву. Дизайн выполнен точно так же, как настенный фундамент.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывные опоры, которые покрывают всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на грунтах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется также там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию переходить через мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая опора вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не зависит от ширины фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен быть на рассмотрении.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = Ш с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = Ш с и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы загружены более или менее одинаково и на равном расстоянии друг от друга, но на практике выполнить это требование сложно, поэтому допускается чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давления рекомендуется выполнить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь можно принять как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна превышать 0,01 от радиус кривизны. Толщина может быть увеличена около колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, г. равномерной толщины, делится на полосы столбцов и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n под любой площадью, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычисляется в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Расчет перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n действие против плота предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличена до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 быть центральной реакцией балок B 1 и B 2 на центральная балка дальнего света В 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принята равной

KR 2 где K – коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), R 1 и R 2 могут быть определены.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны иметь прямоугольную форму. раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

Плотный фундамент против ленточного фундамента – ézsé kft main – энергосберегающее проектирование и строительство дома

Плотный фундамент против ленточного фундамента

Плотный фундамент действительно дороже?

Автор: Тот Жолт, Олах Гергы, Вертеси Мони, Варнаги Сабина
2010-06-22

В нашей серии мы покажем вам, каковы затраты на различные рабочие процессы в среднем особняке.Начнем с основ! Большинство архитекторов предпочитают ленточный фундамент плотному, и в общественном сознании считается, что ленточный фундамент дешевле. Мы думаем, что разница в цене незначительна, мы проиллюстрируем это на примере и хотели бы помочь вам принять лучшее решение.

В качестве предварительного пункта следует выбрать плотный фундамент при соблюдении любого из следующих условий:

  • Подвал запроектирован
  • план этажа комплекса
  • пересеченная местность
  • плохое качество почвы
  • Вокруг фундамента появляются грунтовые воды
  • Вам нужен дом с низким энергопотреблением, полностью защищенным от перегрева

Чтобы понять это, вы должны знать немного больше о двух типах фундаментов, а также должны увидеть пример.

Все расчеты и сравнения, приведенные ниже, относятся к среднему простому дому с полезной площадью 100 м2.

Конструкция ленточного фундамента

Добыча грунта ленточным фундаментом сложнее

Ленточный фундамент выдерживает нагрузку от фасадной стены и различных частей здания в зависимости от его формы с его узкими, но относительно глубокими полосами. Следовательно, ленточный фундамент затрудняет извлечение почвы, поскольку это не просто плоская «чаша», для земляных работ следует использовать подвижные и небольшие приспособления / машины.Только с помощью небольших машин можно выкопать узкие проезды (мини-экскаватор, экскаватор-погрузчик или рыси, оснащенные лопатой), но с такими машинами невозможно сразу положить вынутую землю на грузовик.

Опалубка и бетонирование в несколько этапов

Основным недостатком ленточного фундамента является необходимость опалубки и нескольких этапов бетонирования. Он больше подвержен воздействию тепловых мостов, так как не может быть изолирован вокруг, как плотный фундамент.

Это может быть хорошим решением, если нет необходимости в опалубке из-за рельефа местности, а бетонирование можно выполнить за меньшее количество шагов.

Чтобы оценить затраты, сначала посмотрите, сколько нужно бетона!

Суммируя объем каждой полосы и рассчитывая с достаточным припуском, получаем 28 м. 3 бетона необходимо для заливки ленточного фундамента. Добавьте к этому усиленное основание и перемычки (на схеме выше показаны красным цветом), которые выполняются отдельно, но являются неотъемлемой частью конструкции.С перемычкой и армированным основанием требуется всего 51,5 м 3 бетона. Опять же, следует отметить, что такого количества бетона хватит только на очень простые планы этажей. Если форма здания сложнее, то будет сложнее форма ленточного фундамента, поэтому не только количество бетона будет больше, но и объем земляных работ возрастет.

Расчет ленточного фундамента дома площадью 100 м2
Арт. Материальные затраты
Затраты на оплату труда
Извлечение местности 15 000 HUF (50 €)
Выемка почвы 77 000 HUF (260 €)
Гравийная засыпка (5 см) 65 000 HUF (220 €)
Бетонирование ленточного фундамента насосом 392 000 HUF (1330 €) – бетон + 75 000 HUF (255 €) – насос 120 000 HUF (405 €)
Бетонирование усиленного основания и перемычки 329000 HUF (1115 €) – бетон + 75000 HUF (255 €) – насос 150 000 HUF (405 €)
Гидроизоляция (в два этапа) 226 000 HUF (765 €) 600 000 HUF (2 035 €)
Металлоконструкции 400 000 HUF (1355 €) 432 000 форинтов (1465 евро)

ИТОГО

1 497 000 HUF (5 750 €)

1 459 000 форинтов (4 945 €)
2 956 000 HUF (10 020 €)
Обход в мир бетона

Что означает C 12-24 / KK под бетоном?

При заказе свежего бетона важно, чтобы подрядчик очень точно рассчитал необходимое количество бетона и заказал его хорошего качества.Чтобы понять, что это означает: под маркировкой C 12-24 / KK, C означает нормальную плотность (может быть LC, как легкий бетон, или HC, как тяжелый бетон). Первое числовое значение выражает прочность на сжатие, в данном случае это 12 Н / мм 2 . Вторая цифра указывает на максимально допустимый размер зерна в бетоне, в данном случае диаметром 24 мм. Последняя часть относится к консистенции, KK означает слегка пластичный бетон. После этого можно указать герметичность, морозостойкость и износостойкость бетона, но мы не будем это сейчас обсуждать.

Бетононасос

Бетононасос в большом объеме эффективен, по основам можно рассматривать только это решение. Стоимость в основном зависит от количества бетонировок, а не от того, сколько места следует заливать бетоном. Pumix (миксер и насос) стоит 15 000 форинтов (50 евро) в час, и вы можете арендовать его минимум за три часа. В этом нет ничего удивительного, так как для начала откачки требуется один час, а также по окончании работы один час на очистку насоса.Около 10 м. 3 бетона в час.

Стоимость может увеличиться, если необходимо оплатить плату за пользование дорогой. Например, в Будапеште, в 12-м районе, это 32-тонный грузовик и один раз 4500 форинтов (15 евро). Администрация при местном самоуправлении.

А что это значит для человеческих ресурсов? Чтобы подготовить ленточный фундамент, нужно четыре человека, на десять часов работы это стоит около 120 000 форинтов (405 €).

Конструкция плотового фундамента

Плотный фундамент поддерживает всю конструкцию или ее часть (например, подвал) как непрерывную конструкцию.В отличие от плоского фундамента, который не подходит в местах, где ожидается появление грунтовых вод, плотный фундамент может выдерживать нагрузку, возникающую от давления грунтовых вод. На неровных поверхностях эта технология также является хорошим выбором, поскольку обеспечивает большую устойчивость. Вокруг утеплить намного проще, чем ленточный фундамент, таким образом можно уменьшить линейные тепловые мосты, для пассивных домов обязательно следует выбирать плотный фундамент. По своей природе он не требует опалубки, а сам бетон может быть меньше.Важным моментом является то, что его можно реализовать в однофазном режиме, в отличие от ленточного фундамента (см. Изображение выше).

Расчеты фундаментов плотов с фундаментом
Товар Материальные затраты (/ м 2 ) Затраты на оплату труда (/ м 2 )
Бетон 8 см 1 280 HUF (4,3 €) 1000 форинтов (3.4 €)
Гидроизоляция (два слоя) 2 260 HUF (7,6 €) 6000 форинтов (20,3 €)
1 слой фольги 300 форинтов (1.0 €) 400 HUF (1,4 €)
бетон 5 см 900 HUF (3,1 €) 1000 форинтов (3,4 €)
Железобетон, 25 см 5000 форинтов (16.9 €) 1 800HUF (6,1 €)
Утюг 6000 HUF (20,3 €) 5 400 HUF (18,3 €)
ИТОГО (100 м 2 15 740 000 HUF (5 335 €) 15 600 000 HUF (5 290 €)
Гравийная засыпка 35 000 HUF (120 €) 30 000 HUF (100 €)

ИТОГО

1 609 000 форинтов (5 455 €)

1 590 000 форинтов (5 390 €)

3 199 000 форинтов (10 845 €)
Расчет фундамента плота, без фундамента
Товар /100 м2
Начальная цена 3 199 000 форинтов (10 845 €)
Подготовка зеркала 45 000 HUF (150 €)
Транспортировка вынутого грунта 175 500 HUF (595 €)

ИТОГО

3 419 500 форинтов (11590 €)

Если в доме нет подвала, придется добавить подготовку так называемого зеркала и удаление вынутого грунта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *