1. Avalbaev A.M., Yuldashev R.A., Shakirova F.M. Physiological effects of phytohormones brassinosteroids on plants. 2006. Uspekhi Sovrem. Biologii. 126(2) : 192-200. | ||||
2. Baliuk S., Medvedev V., Miroshnichenko M., Skrylnik Ye., Timchenko D., Fatieev A., Khristenko A., Tsapko Yu. 2012. Environmental state of soils in Ukraine. geogr. z. 2 : 38-42. | ||||
3. Baranenko V.V. 2006. Superoxide dismutase in plant cells. Tsitologiya. 48(6) : 465-474. | ||||
4. Vayner A.O., Kolupaev Yu.E., Yastreb T.O. 2013. Participation of hydrogen peroxide in induction of proline accumulation in millet plants under action of NaCl. Hark. nac. agrar. univ., Ser. Biol. 2(29) : C. 32-38. | ||||
5. Vayner A.A., Kolupaev Yu.E., Yastreb T.O., Khripach V.A. 2014. 24-Epibrassinolide induces salt tolerance of millet (Panicum miliaceum) seedlings involving reactive oxygen species. Dokl. NAS Belarus. 58(4) : 67-70. | ||||
6. Veselov D.S., Markova I.V., Kudoyarova G.R. 2007. A Response of plants to salinization and formation of salt tolerance. Uspekhi Sovrem. Biologii. 127(5) : 482-493. | ||||
7. Karpets Yu.V., Kolupaev Yu.E. 2017. Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Hark. nac. agrar. univ., Ser. Biol. 2(41) : 6-31. | ||||
8. Kolupaev Yu.E. 2016. Plant cell antioxidants and their role in ros signaling and plant resistance. Uspekhi Sovrem. Biologii. 136(2) : 181-198. | ||||
9. Kolupaev Yu.E., Vayner A.A., Yastreb T.O. 2014. Proline: Physiological functions and regulation of its content in plants under stress conditions . Hark. nac. agrar. univ., Ser. Biol. 2(32) : 6-22. | ||||
10. Kolupaev Yu.Ye., Karpets Yu.V., Obozniy O.I. 2011. Plants antioxidative system: participation in cell signaling and adaptation to influence of stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 1(22) : 6-34. | ||||
11. Kolupaev Yu.Ye., Karpets Yu.V. 2010. Formation of plants adaptive reactions to abiotic stressors influence. Kyiv : 350 p. | ||||
12. Kolupaev Yu.E., Firsova E.N., Yastreb T.O., Lugovaya A.A. 2017. The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. https://doi.org/10.1134/S0003683817050088 |
||||
13. Kolupaev Yu.E., Yastreb T.O. 2015. Physiological functions of nonenzymatic antioxidants in plants. Visn. Hark. nac. agrar. univ., Ser. Biol. 2(35) : 6-25. | ||||
14. Kolupaev Yu.E., Karpets Yu.V., Musatenko L.I. 2007. The participation of reactive oxygen species in the induction of salt tolerance of wheat seedlings by salicylic acid. Dopovidi NAN Ukrainy. 6 : 154-158. | ||||
15. Olenichenko N.A., Zagoskina N.V., Astakhova N.V., Trunova T.I., Kuznetsov Yu.V. 2008. Primary and secondary metabolism of winter wheat under cold hardening and treatment with antioxidants. Appl. Biochem. Microbiol. 44(5) : 535. https://doi.org/10.1134/S0003683808050141 |
||||
16. Pradedova E.V., Nimaeva O.D., Salyaev R.K. Redox processes in biological systems. Russ. J. Plant Physiol. 64(6) : 822-832. https://doi.org/10.1134/S1021443717050107 |
||||
17. Pradedova E.V., Tolpygina O.A., Isheeva O.D., Putilina T.E., Salyaev R.K. 2010. Glutathione and glutathione-S-transferase activities of the vacuoles of the beet (Beta vulgaris L.) roots. Doklady Biological Sciences. 433 : 275-278. https://doi.org/10.1134/S0012496610040113 |
||||
18. Putilina F.E., Galkina O.V., Yeshchenko N.D., Dizhe G.P., Krasovskaya I.E. 2008. Free radical oxidation. St. Petersburg :161 p. | ||||
19. Radyukina N.L., Kartashov A.V., Ivanov Yu.V., Shevyakova N.I., Kuznetsov Vl.V. 2007. Functioning of defense systems in halophytes and glycophytes under progressing salinity. Russ. J. Plant Physiol. 54(6) : 806-815. https://doi.org/10.1134/S1021443707060131 |
||||
20. Radyukina N.L., Toaima I.M., Zaripova N.R. 2012. The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russ. J. Plant Physiol. 59(1) : 71-78. https://doi.org/10.1134/S1021443712010165 |
||||
21. Rozentsvet O.A., Nesterov V.N., Bogdanova E.S. 2017. Structural, physiological, and biochemical aspects of salinity tolerance of halophytes. Russ. J. Plant Physiol. 64(4) : 251-265. https://doi.org/10.1134/S1021443717040112 |
||||
22. Soshinkova T.N., Radyukina N.L., Korolkova D.V., Nosov A.V. 2013. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol. 60(1) 41-54. https://doi.org/10.1134/S1021443713010093 |
||||
23. Tarakhovskiy Yu.S., Kim Yu.A., Abdrasilov B.S., Muzafarov E.N. 2013. Flavonoids: biochemistry, biophysics, medicine. Pushchino : 310 p. | ||||
24. Qi Y.C., Liu W.Q., Qiu L.Y., Zhang S.M., Ma L., Zhang H. 2010. Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis. Russ. J. Plant Physiol. 57(2) : 245-253. |
||||
25. Cherenkevich S.N., Martinovich G.G., Martinovich I.V., Gorudko I.V., Shamova, E.V. 2013. Redox regulation of cellular activity: concepts and mechanisms. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences. 1 : 92-108. | ||||
26. Zhao F.Y., Liu T., Xu Z.J. 2010. Modified responses of root growth and reactive oxygen species-scavenging system to combined salt and heat stress in transgenic rice. Russ. J. Plant Physiol. 57(4) :518-525. https://doi.org/10.1134/S1021443710040096 |
||||
27. Shevyakova N.I., Bakulina E. A., Kuznetsov V.V. 2009. Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress. Russ. J. Plant Physiol. 56(5) : 736-742. https://doi.org/10.1134/S1021443709050124 |
||||
28. Yastreb T.O. 2012. Influence of aromatic and succinic acids on superoxide dismutase activity and proline content in wheat seedlings under salt stress conditions. Visn. Hark. nac. agrar. univ., Ser. Biol. 3(27) : 50-57. | ||||
29. Yastreb T.O., Kolupaev Yu.E., Karpets Yu. V., Dmitriev A.P. 2017. Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants. Russ. J. Plant Physiol. 64(2) : 207-214. https://doi.org/10.1134/S1021443717010186 |
||||
30. Yastreb T.O., Kolupaev Yu.E., Lugovaya A.A., Dmitriev A.P. 2016. Content of osmolytes and flavonoids under salt stress in arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol. 52(2) : 223-229. https://doi.org/10.1134/S0003683816020186 |
||||
31. Yastreb T.O., Kolupaev Yu.E., Shvidenko N.V., Lugovaya A.A., Dmitriev A.P. 2015. Salt stress response in arabidopsis thaliana plants with defective jasmonate signaling. Appl. Biochem. Microbiol. 51(4) : 451-454. https://doi.org/10.1134/S000368381504016X |
||||
32. AbdElgawad H., Zinta G., Hegab M. M., Pandey R., As-ard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. – 2016. – V. 7:276. https://doi.org/10.3389/fpls.2016.00276 |
||||
33. Ahanger M.A., Agarwal R.M. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen as-similation in wheat (Triticum aestivum L.) as influ-enced by potassium supplementation. Plant Physiol. Biochem. 115 : 449-460. https://doi.org/10.1016/j.plaphy.2017.04.017 |
||||
34. Alhasnawi A.N., Che Radziah C.M.Z., Kadhimi A. A., Isahak A., Mohamad A., Yusoff W.M.W. 2016. Enhance-ment of antioxidant enzymes activities in rice callus by ascorbic acid under salinity stress. Biol. Plant. 60 : 783-787. https://doi.org/10.1007/s10535-016-0603-9 |
||||
35. Ali B., Hayat S., Fariduddin Q., Ahmad A. 2008. 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere. 72 : 1387-1392. |
||||
36. Alscher R.G., Erturk N., Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53 : 1331-1341. https://doi.org/10.1093/jxb/53.372.1331 |
||||
37. Asada K. 1999. The water-water cycle in chloroplasts: scav-enging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601 |
||||
38. Aubert S., Hennion F., Bouchereau A., Gout E., Blingy R., Dome A.J. 1999. Subcellular compartmentation of pro-line in the leaves of the subantartic Kerguelen cab-bage Pringlea antiscorbutica R-Br. In vivo C-13 NMR study. Plant Cell Environ. 22 : 255-259. https://doi.org/10.1046/j.1365-3040.1999.00421.x |
||||
39. Azevedo-Neto A.D., Prisco J.T., Eneas-Filho J., Medei-ros J.V.R. Gomes-Filho E. 2005. Hydrogen peroxidepre treatment induces salt stress acclimationin maize plants. J. Plant Physiol. 162 : 1114-1122. https://doi.org/10.1016/j.jplph.2005.01.007 |
||||
40. Bela K., Horváth E. Gallé Á., Szabados L., Tari I., Csiszár J. 2015. Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant develop-ment and stress responses. J. Plant Physiol. 176 : 192-201 https://doi.org/10.1016/j.jplph.2014.12.014 |
||||
41. Bestwick C.S., Brown I.R., Bennett M.H.R., Mans-field J.W. 1997. Localization of hydrogen peroxide accu-mulation during the hypersensitive reaction of let-tuce cells to Pseudomonas syringae pv. Phaseolicola. Plant Cell. 9 : 209-221. https://doi.org/10.1105/tpc.9.2.209 |
||||
42. Bhatt D., Bhatt M.D., Dobriyal A.K., Arora S. 2017. Effect of exogenous application of h3O2 in eleusine coracana plants is correlated with increased activity of antiox-idant enzymes in a time dependent manner. In: Int. Conf. Recent Trends Science, Technology and Man-agement. Aurangbad (India), pp. 213-221. | ||||
43. Bhusan D., Das.K., Hossain M., Murata Y., Hoque M.A. 2016. Improvement of salt tolerance in rice (Oryza sativa L.) by increasing antioxidant defense systems using exogenous application of proline. Austral. J. Crop Sci. 10 : 50-56. | ||||
44. Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxi-dants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91 : 179-194. https://doi. org/10.1093/aob/mcf118 |
||||
45. Blumwald E., Aharon G.S., Apse M.P. 2000. Sodium transport in plant cells. Biochem. Biophys. Acta. 1465 : 140-151. https://doi.org/10.1016/S0005-2736(00)00135-8 |
||||
46. Bohnert H.J., Nelson D.E., Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell. 7 : 1099-1111. https://doi.org/10.1105/tpc.7.7.1099 |
||||
47. Brigelius-Flohe R., Maiorino M. Glutathione peroxidases 2013. Biochim. Biophys. Acta. 1830. 3289-3303. https://doi.org/10.1016/j.bbagen.2012.11.020 |
||||
48. Carvalho K., Campos M.K., Domingues D.S., Perei-ra L.F., Vieira L.G. 2013. The accumulation of endoge-nous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep. 40 : 3269-3279. https://doi.org/10.1007/s11033-012-2402-5 |
||||
49. Chen C., Dickman M.B. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc. Natl. Acad. Sci. USA. 102 : 3459-3464. https://doi.org/10.1073/pnas.0407960102 |
||||
50. Christou A., Manganaris G.A., Papadopoulos I., Fotopoulos V. 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 64 : 1953-1966. https://doi.org/10.1093/jxb/ert055 |
||||
51. Creissen G.P., Broadbent P., Kular B., Reynolds H. 1994. Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc. Royal Society Edinburgh, Section B: Biolog. Sci. 102 : 167-175. https://doi.org/10.1017/S0269727000014081 |
||||
52. Deef H.E. 2007. Influence of salicylic acid on stress tolerance during seed germination of Triticum aestivum and Hordeum vulgare. Adv. Biol. Res. 1 : 40-48. | ||||
53. del Rio L.A., Corpas J., Sandalio L.M., Palma J.M., Gómez M., Barroso J.B. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53 : 1255-1272. https://doi.org/10.1093/jexbot/53.372.1255 |
||||
54. del Rio L.A., Sandalio L.M., Altomare D., Zilinskas B. 2003. Mitochondria and peroxisomal manganese superox-ide dismutase. J. Exp. Bot. 54 : 923-933. https://doi.org/10.1093/jxb/erg091 |
||||
55. Diaz-Vivancos P., Faize M., Barba-Espin G., Faize L., Petri C., Hernandez J.A., Burgos L. 2013. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol. J. 11 : 976-985. https://doi.org/10.1111/pbi.12090 |
||||
56. Dionisio-Sese M., Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135 : 1-9. https://doi.org/10.1016/S0168-9452(98)00025-9 |
||||
57. Dixon D.P., Cummins I., Cole D.J., Edwards R. 1998. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 3 : 258-266. https://doi.org/10.1016/S1369-5266(98)80114-3 |
||||
58. Dombrecht B., Xue G.P., Sprague S.J., Kirkegaard J.A., Ross J.J., Reid J.B., Fitt G.P., Sewelam N., Schenk P.M., Manners J. M., Kazan K. 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 19 : 2225-2245. https://doi.org/10.1105/tpc.106.048017 |
||||
59. Eshdat Y., Holland D., Faltin Z., Ben-Hayyim G. 1997. Plant glutathione peroxidases. Physiol. Plant. 100 : 234-240. https://doi.org/10.1111/j.1399-3054.1997.tb04779.x |
||||
60. Es-Safi N.E., Ghidouche S., Ducrot P.H. 2007. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules. 12 : 2228-2258. https://doi.org/10.3390/12092228 |
||||
61. Fariduddin Q., Khalil R.R. A.E., Mir B.A., Yusuf M., Ahmad A. 2013.24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 185 : 7845-7856. https://doi.org/10.1007/s10661-013-3139-x |
||||
62. Flowers T.J., Colmer T.D. 2008. Salinity tolerance in halophytes.New Phytol. 179 : 945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x |
||||
63. Flowers T.J., Galal H.K., Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plant. Funct. Plant Biol. 37 : 604-612. https://doi.org/10.1071/FP09269 |
||||
64. Foyer C.H., Noctor G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11 : 861-906. https://doi.org/10.1089/ars.2008.2177 |
||||
65. Foyer C.H., Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155 : 93-100. https://doi.org/10.1104/pp.110.166181 |
||||
66. Gharsallah C., Fakhfakh H., Grubb D., Gorsane F. 2016. Effect of salt stress on ion concentration, proline con-tent, antioxidant enzyme activities and gene expres-sion in tomato cultivars. AoB Plants. 8 : 55. https://doi.org/10.1093/aobpla/plw055 |
||||
67. Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016 |
||||
68. Gondim F.A.,Gomes-Filho E.,Lacerda C.F., Prisco J.T., Neto A.D.A., Marques E.C. 2010. Pretreatment with h3O2 in maize seeds: effects on germination and seedling acclimation to salts tress. Braz. J. Plant Physiol. 22 : 103-112. https://doi. org/10.1590/S1677-04202010000200004 |
||||
69. Gould K.S., Lister C. 2006. Flavonoid functions in plants. In: Flavonoids: chemistry, biochemistry, and applications (Eds. Andersen O.M., Markham K.R.). Taylor & Francis Group, pp. 397-442. https://doi.org/10.1201/9781420039443.ch8 |
||||
70. Guan L.M., Scandalios J.G. 2000. Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biol. Med. 28 : 1182-1190. https://doi.org/10.1016/S0891-5849(00)00212-4 |
||||
71. Guo J., Pang Q., Wang L. Yu P., Li N., Yan X. 2012. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci. 10 : 1-13. https://doi.org/10.1186/1477-5956-10-57 |
||||
72. Hagemann M. , Murata N. 2003.Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol. 131 : 1628-1637. https://doi.org/10.1104/pp.102.017277 |
||||
73. Hasanuzzaman M., Hossain M.A., Fujita M. 2011. Nitric oxide modulates antioxidant defense and the methyl-glyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotech. Rep. 5 : 353-365. https://doi.org/10.1007/s11816-011-0189-9 |
||||
74. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 : 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463 |
||||
75. Hernandez J.A., Ferrer M.A., Jimenez A., Barcelo A.R., Sevilla F. 2001. Antioxidant systems and O2-/h3O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127 : 817-831. https://doi.org/10.1104/pp.010188 |
||||
76. Hernandez J.A., Jimenes A., Mullineaux P., Sevilla F. 1999. Response of antioxidant systems and leaf water relations to NaCl stress in pea. New Phytol. 141 : 241-251. https://doi.org/10.1046/j.1469-8137.1999.00341.x |
||||
77. Hoque M.A., Banu M.N., Nakamura Y., Shimoishi Y., Murata Y. 2008. Proline and glycinebetaine enhance anti-oxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cul-tured tobacco cells. J. Plant Physiol. 165 : 813-824. https://doi.org/10.1016/j.jplph.2007.07.013 |
||||
78. Hossain M.A., Bhattacharjee S., Armin S.M., Qian P., Xin W., Li H.Y., Burritt D.J., Fujita M., Tran L.S.P. 2015. Hydrogen peroxide priming modulates abiotic oxi-dative stress tolerance: insights from ROS detoxifi-cation and scavenging. Front. Plant Sci. 6 : 420. https://doi.org/10.3389/fpls.2015.00420 |
||||
79. Isayenkov S.V. 2012. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46 : 302-318. https://doi.org/10.3103/S0095452712050040 |
||||
80. Islam M.M., Hoque M.A., Okuma E., Banu M.N., Shimoishi Y., Nakamura Y., Murata Y. 2009a. Exogenous proline and glycinebetaine increase antioxidant en-zyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol. 166 : 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002 |
||||
81. Islam M.M., Hoque M.A., Okuma E., Jannat R., Banu M.N., Jahan M.S., Nakamura Y., Murata Y. 2009b. Proline and glycinebetaine confer cadmium tolerance on to-bacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci. Biotechnol. Biochem. 73 : 2320-2323. https://doi.org/10.1271/bbb.90305 |
||||
82. Ivanov S., Konstantinova T., Parvanova D., Todorova D., Djilianov D., Alexieva V. 2001. Effect of high temper-atures on the growth, free proline content and some antioxidants in tobacco plants. Rep. Bulg. Acad. Sci. 54(7) : 71-74. | ||||
83. Jahantigh O., Najafi F., Badi H.N., Khavari-Nejad R.A., Sanjarian F. 2016. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biol. Hung. 67 : 195-204. https://doi.org/10.1556/018.67.2016.2.7 |
||||
84. Jing X., Hou P., Lu Y., Deng S., Li N., Zhao R., Sun J., Wang Y., Han Y., Lang T., Ding M., Shen X., Chen S. 2015. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front. Plant Sci. 6 : 23. https://doi.org/10.3389/fpls.2015.00023 |
||||
85. Jithesh M.N., Prashanth S.R., Sivaprakash K.R., Parida A.K. 2006.Antioxidative response mechanisms in halophytes: their role in stress defense. J. Genetics. 85 : 237-254. https://doi.org/10.1007/BF02935340 |
||||
86. Joseph B., Jini D., Sujatha S. 2010. Insight into the role of ex-ogenous salicylic acid on plants growth under salt environment. Asian J. Crop Sci. 2 : 226-235. https://doi.org/10.3923/ajcs.2010.226.235 |
||||
87. Kavi Kishor P.B., Sangam S., Amrutha R.N. P., Laxmi S., Naidu K.R., Rao K.R.S.S., Rao S., Reddy K.J., Theriappan P., Sreenivasulu N. 2005.Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Sci. 88 : 424-438. | ||||
88. Khan N., Siddiqui M., Mohammad M.H.F., Naeem M. 2012. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide27 : 210-218. https://doi.org/10.1016/j.niox.2012.07.005 |
||||
89. Khare T., Kumar V., Kavi Kishor P.B. 2015. Na+ and Cl- ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma. 252 : 1149-1165. https://doi.org/10.1007/s00709-014-0749-2 |
||||
90. Khlestkina E.K. 2013. The adaptive role of flavonoids: em-phasis on cereals. Cereal Res. Commun. 41 : 185-198. https://doi.org/10.1556/CRC.2013.0004 |
||||
91. Khripach V., Zhabinskii V., De Groot A. 2000. Twenty years of brassinosteroids: Steroidal plant hormones war-rant better crops for the XXI century. Ann. Bot. 86 : 441-447. https://doi.org/10.1006/anbo.2000.1227 |
||||
92. Koleška I., Hasanagić D., Maksimović I., Bosančić B., Kukavica B. 2017. The role of antioxidative metabolism of tomato leaves in long-term salt-stress response. J. Plant Nutr. Soil Sci. 180 : 105-112. https://doi.org/10.1002/jpln.201600439 |
||||
93. Kolupaev Yu.E., Karpets Yu.V. 2013. Participation of reactive oxygen species in formation of induced resistances of plants to abiotic stressors/ In: Handbook on Reactive Oxygen Species (ROS): Formation Mechanisms, Physiological Roles and Common Harmful Effects (Eds: Suzuki M., Yamamoto S.) New York : Nova Science Publishers, pp. 109-136. | ||||
94. Kumar N.S, Zhu W. , Liang X., Zhang L., Demers A.J., Zimmerman M.C., Simpson M.A., Becker D.F. 2012. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radical Biol. Med. 53 : 1181-1191. https://doi.org/10.1016/j.freeradbiomed.2012.07.002 |
||||
95. Kumar V., Shriram V., Kavi Kishor P. B., Jawali N., Shitole M.G. 2010. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol. Rep. 4(1) : 37-48. https://doi.org/10.1007/s11816-009-0118-3 |
||||
96. Kumar V., Khare T., Sharma M., Wani S.H. 2017. ROS-Induced signaling and gene expression in crops under salinity stress. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (Eds. Khan M.I.R., Khan N.A.). Springer Nature Singapore Pte Ltd., pp. 179-184. https://doi.org/10.1007/978-981-10-5254-5_7 |
||||
97. Kumari G.J., Reddy A.M., Naik S.T. S., Kumar G., Prasanthi J., Sriranganayakulu G., Reddy P. C., Chinta S. 2006. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol. Plant. 50 : 219-226. https://doi.org/10.1007/s10535-006-0010-8 |
||||
98. Kuzniak E., Sklodowska M. 2004. The effect of Botrytic ciner-ea infection on the antioxidant proline of mitochon-dria from tomato leaves. J. Exp. Bot. 55 : 605-612. https://doi.org/10.1093/jxb/erh076 |
||||
99. Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. 2014. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablish-ment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci. 225 : 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006 |
||||
100. Lázaro J.J., Jiménez A., Camejo D., Iglesias-Baena I., del Carmen Martí M., Lázaro-Payo A. Barranco-Medina S., Sevilla F. 2013. Dissecting the integrative anti-oxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front. Plant Sci. 4 : 460. https://doi.org/10.3389/fpls.2013.00460 |
||||
101. Leshem Y., Seri L., Levine A. 2007. Induction of phosphatidyl-inositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51 : 185-197. https://doi.org/10.1111/j.1365-313X.2007.03134.x |
||||
102. Li Q.Y., Niu H.B., Yin J., Wang M.B., Shao H.B., Deng D.Z., Chen X.X., Ren J.P., Li Y.C. 2008. Protective role of exogenous nitric oxide against oxida-tivestress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces. 65 : 220-225. https://doi.org/10.1016/j.colsurfb.2008.04.007 |
||||
103. Li J.T., Qiu Z.B., Zhang X.W., Wang L.S. 2011. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33 : 835-842. https://doi.org/10.1007/s11738-010-0608-5 |
||||
104. Li T., Jia K.P., Lian H.L. Yang X., Li L., Yang H.Q. 2014. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun. 454 : 78-83. https://doi.org/10.1016/j.bbrc.2014.10.059 |
||||
105. Liang X., Zhang L., Natarajan S.K., Becker D.F. 2013. Proline mechanisms of stress survival. Antioxid. Redox Signal. 19 : 998-1011. https://doi.org/10.1089/ars.2012.5074 |
||||
106. Lin Y., Liu Z., Shi Q., Wang X., Wei M., Yang F. 2012a. Exoge-nous nitric oxide (NO) increased antioxidant capaci-ty of cucumber hypocotyl and radicle under salt stress. Sci. Hort. 142 : 118-127. https://doi.org/10.1016/j.scienta.2012.04.032 |
||||
107. Lin A., Wang Y., Tang J., Xue P., Li C., Liu L., Hu B., Yang F., Loake G.J., Chu C. 2012b. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 158 : 451-464. https://doi.org/10.1104/pp.111.184531 |
||||
108. Lisjak M., Teklic T., Wilson I.D., Whiteman M., Hancock J.T. 2013. Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ. 36 : 1607-1616. https://doi.org/10.1111/pce.12073 |
||||
109. Liu Y., Wu R., Wan Q., Xie G., Bi Y. 2007. Glucose-6-phosphate dehydrogenase plays a pivotal role in ni-tric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol. 48 : 511-522. https://doi.org/10.1093/pcp/pcm020 |
||||
110. Liu J., Zhu J.K. 1997. Proline accumulation and salt-stressinduced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 114 : 591-596. https://doi.org/10.1104/pp.114.2.591 |
||||
111. López-Carrión A.I., Castellano R., Rosales M.A., Ruiz J.M., Romero L. 2008. Role of nitric oxide under saline stress: implications on proline metabolism. Biol. Plant. 52 : 587-591. https://doi.org/10.1007/s10535-008-0117-1 |
||||
112. Ma J., Yuan Y., Ou J. 2006. Influencing of salicylic acid on roots of rice plants at NaCl-stress. J. Wuhan Univ. Natur. Sci. Ed. 52(4) : 471-474. | ||||
113. Ma L., Zhang H., Sun L., Jiao Y., Zhang G., Miao C. , Hao F. 2012. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J. Exp. Bot. 63 : 305-317. https://doi.org/10.1093/jxb/err280 |
||||
114. Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 : 127-158. https://doi.org/10.1146/annurev.arplant.47.1.127 |
||||
115. Matysik J., Alia B., Bhalu B., Mohanty P. 2002. .Molecular mechanism of quenching of reactive oxygen species by proline under stress in plant. Curr. Sci. 82 : 525-532. | ||||
116. Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x |
||||
117. Munns R., Tester M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59 : 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 |
||||
118. Mur L.A.J., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Har-ren F.J.M., Hebelstrup K.H., Gupta K.J. 2013. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 5 : pls052. https://doi.org/10.1093/aobpla/pls052 |
||||
119. Neill S.O., Gould K.S. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30(8) : 865-873. https://doi.org/10.1071/FP03118 |
||||
120. Noctor G., Mhamdi A., Foyer C.H. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164 : 1636-1648. https://doi.org/10.1104/pp. 113.233478 |
||||
121. Ogawa K., Kanematsu S., Asada K. 1996. Intra and extra-cellular localization of «cytosolic» Cu/Zn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol. 37: 790-799. https://doi.org/10.1093/oxfordjournals.pcp.a029014 |
||||
122. Ogawa K., Kanematsu S., Asada K. 1997. Generation of su-peroxide anion and localisation of Cu/Zn-superoxide dismutase in vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 38 : 1118-1126. https://doi.org/10.1093/oxfordjournals.pcp.a029096 |
||||
123. Okuma E., Murakami Y., Shimoishi Y., Tada M., Murata Y. 2004.Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci. Plant Nutr. 50 : 1301-1305. https://doi. org/10.1080/00380768.2004.10408608 |
||||
124. Ozgur R., Uzilday B., Sekmen A.H., Turkan I. 2013. Reactive oxygen species regulation and antioxidant defense in halophytes. Funct. Plant Biol. 40 : 832-847. https://doi.org/10.1071/FP12389 |
||||
125. Palma J.M., Huertas E.L., Corpas F.J., Sandalio L.M., Gómez M., Del Río L.A. 1998. Peroxisomal manganese su-peroxide dismutase: purification and properties of the isozyme from pea leaves. Physiol. Plant. 104 : 720-726. https://doi.org/10.1034/j.1399-3054.1998.1040429.x |
||||
126. Parida A., Das A.B., Das P. 2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45 : 28-36. https://doi.org/10.1007/BF03030429 |
||||
127. Parida A.K., Das A.B. 2005.Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60 : 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010 |
||||
128. Poór P., Laskay G., Tari I. 2015. Role of nitric oxide in salt stress-induced programmed cell death and defense mechanisms. In: Nitric Oxide Action in Abiotic Stress Responses in Plants (Eds. Khan M.N. et al.). Switzerland: Springer International Publishing, pp. 193-219. https://doi.org/10.1007/978-3-319-17804-2_13 |
||||
129. Qureshi M.I., Abdin M.Z., Ahmad J., Iqbal M. 2013. Effect of longterm salinity on cellular antioxidants, compati-ble solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry. 95 : 215-223. https://doi.org/10.1016/j.phytochem.2013.06.026 |
||||
130. Rady M.M. , Hemida K.A. 2016. Sequenced application of ascorbate-proline-glutathione improves salt toler-ance in maize seedlings. Ecotoxicol. Environ. Saf. 133 : 252-259. https://doi.org/10.1016/j.ecoenv.2016.07.028 |
||||
131. Rahman A., Hossain M. S., Mahmud J.A., Nahar K., Hasanuzzaman M., Fujita M. 2016. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol. Biol. Plants. 22 : 291-306. https://doi.org/10.1007/s12298-016-0371-1 |
||||
132. Razavizadeh R., Ehsanpour A.A. 2009.Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biol. Lett. 46(2) : 63-75. https://doi.org/10.2478/v10120-009-0002-4 |
||||
133. Rhoads D.M., Umbach A.L., Subbaiah C.C., Siedow J.N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141 : 357-366. https://doi.org/10.1104/pp.106.079129 |
||||
134. Romero-Puertas M.C., Corpas F.J., Sandalio L.M., Leterrier M., Rodríguez-Serrano M., Del Río L.A., Palma J.M. 2006. Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol. 170 : 432-452. https://doi.org/10.1111/j.1469-8137.2005.01643.x |
||||
135. Roveda-Hoyos G., Fonseca-Moreno L.P. 2011. Proteomics: a tool for the study of plant response to abiotic stress. Agr. Colombiana. 29 : 221-230. | ||||
136. Ruan H., Shen W., Ye M., Xu L. 2002. Protective effects of ni-tric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum L. ) leaves. Chinese Sci. Bull. 47 : 677-681. https://doi.org/10.1360/02tb9154 |
||||
137. Sagi M., Fluhr R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141 : 336-340. https://doi.org/10.1104/pp.106.078089 |
||||
138. Sathiyaraj G., Srinivasan S., Kim Y.J., Lee O.R., Balusamy S.D.R., Khorolaragchaa A., Yang D.C. 2014. Acclimation of hydrogen peroxide enhances salt tol-erance by activating defense-related proteins in Panax ginseng CA. Meyer. Mol. Biol. Rep. 41 : 3761-3771. https://doi.org/10.1007/s11033-014-3241-3 |
||||
139. Shahid M.A., Pervez M.A., Balal R.M., Mattson N.S., Rashid A., Ahmad R., Ayyub C.M., Abbas T. 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L. ). Austr. J. Crop Sci. 5 : 500-510. | ||||
140. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V., Fatkhutdinova R.A., Fatkhutdinova D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164 : 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6 |
||||
141. Shana C., Liang Z. 2010. Jasmonicacid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178 : 130-139. https://doi.org/10.1016/j.plantsci.2009.11.002 |
||||
142. Sheokand S., Bhankar V., Sawhney V. 2010. Ameliorative effect of exogenous nitric oxide on oxidative metabo-lism in NaCl treated chickpea plants. Braz. J. Plant Physiol. 22 : 81-90. https://doi.org/10.1590/S1677-04202010000200002 |
||||
143. Shi Q., Ding F., Wang X., Wei M. 2007. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 45 : 542-550. https://doi.org/10.1016/j.plaphy.2007.05.005 |
||||
144. Simaei M., Khavari-Nejad R.A., Saadatmand S., Bernard F., Fahimi H. 2011. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accu-mulation in Glycine max L. treated with NaCl salinity. J. Agric. Res. 6 : 3775-3782. | ||||
145. Singh D., Roy B.K. 2016. Salt stress affects mitotic activity and modulates antioxidant systems in onion roots. J. Bot. 39 : 67-76. https://doi.org/10.1007/s40415-015-0216-0 |
||||
146. Srivastava S.A.K., Srivastava S., Lokhande V.H., D’Souza S.F., Suprasanna P. 2015. Salt stress reveals dif-ferential antioxidant and energetics responses in gly-cophyte (Brassica juncea L. ) and halophyte (Sesuvium portulacastrum L.). Environ. Sci. https://doi.org/10.3389/fenvs.2015.00019 |
||||
147. Štolfa I., Špoljarić Maronić D., Žuna Pfeiffer T., Lončarić Z. 2016. Glutathione and related enzymes in re-sponse to abiotic stress. Redox State as a Central Regulator of Plant-Cell Stress Responses (Eds. Gupta D.K. et al.). Switzerland : Springer International Publishing, pp. 183-211. https://doi.org/10.1007/978-3-319-44081-1_9 |
||||
148. Szalai G., Kellos T., Galib G., Kocsy G. 2009.Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Plant Growth Regul. 28 : 66-80. https://doi.org/10.1007/s00344-008-9075-2 |
||||
149. Takemura T., Hanagata N., Dubinsky Z., Karube I. 2002.Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dis-mutase and catalase from Bruguiera gymnorrhiza. Trees-Struct. Funct. 16 : 94-99. https://doi.org/10.1007/s00468-001-0154-2 |
||||
150. Talaat N.B., Shawky B.T. 2013. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol. Plant. 35 : 729-740. https://doi.org/10.1007/s11738-012-1113-9 |
||||
151. Taïbi K., Taïbi F., Abderrahim L.A., Ennajah A., Belkhodja M., Mulet J.M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr. J. Bot. 105 : 306-312. https://doi.org/10.1016/j.sajb.2016.03.011 |
||||
152. Tognolli M., Penel C., Greppin H., Simon P. 2003. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. 288 : 129-138. https://doi.org/10.1016/S0378-1119(02)00465-1 |
||||
153. Uchida A., Jagendorf A.T., Hibino T., Takabe T., Takabe T. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163 : 515-523. https://doi.org/10.1016/S0168-9452(02)00159-0 |
||||
154. Vighi I.L., Benitez L.C., Amaral M.N., Moraes G.P., Auler P.A., Rodrigues G.S., Deuner S., Maia L.C., Braga E.J.B. 2017. Functional characterization of the anti-oxidant enzymes in rice plants exposed to salinity stress. Plant. 61 : 540-550. https://doi.org/10.1007/s10535-017-0727-6 |
||||
155. Vijayalakshmi T., Vijayakumar A.S., Kiranmai K., Nareshkumar A., Sudhakar C. 2016. Salt stress induced modulations in growth, compatible solutes and anti-oxidant enzymes response in two cultivars of saf-flower (Carthamus tinctorius L. cultivar TSF1 and cultivar SM) differing in salt tolerance. J. Plant Sci. 7 : 1802-1819. https://doi.org/10.4236/ajps.2016.713168 |
||||
156. Wang F.Z., Wang Q.B., Kwon S.Y., Kwak S.S., Su W.A. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Plant Physiol. 162 : 465-472. https://doi.org/10.1016/j.jplph.2004.09.009 |
||||
157. Wang H., Feng T., Peng X., Yan M., Tang X. 2009. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Environ. Saf. 72 : 1354-1362. https://doi.org/10.1016/j.ecoenv.2009.03.008 |
||||
158. Wang Y., Li L., Cui W., Xu S., Shen W., Wang R. 2012.Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil. 351 : 107-119. https://doi.org/10.1007/s11104-011-0936-2 |
||||
159. Wang L.J., Li S.H. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170 : 685-694. https://doi.org/10.1016/j.plantsci.2005.09.005 |
||||
160. Waskiewicz A., Gładysz O., Szentner K., Golinski P. 2014. Role of glutathione in abiotic stress tolerance. Oxidative Damage to Plants Antioxidant Networks and Signaling (Ed. Ahmad P.). Academic Press is an imprint of Elsevier, pp. 149-181. https://doi.org/10.1016/B978-0-12-799963-0.00005-8 |
||||
161. Wendehenne D., Durner J., Chen Z., Klessig D.F. 1998. Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. 47 : 651-657. https://doi. org/10.1016/S0031-9422(97)00604-3 |
||||
162. Wendel A. 1988.Enzymes acting against reactive oxygen. Enzymes – Tools and Target. Basel : Karger, pp. 161-167. | ||||
163. Widodo J.H.P., Newbigin E., Tester M., Schraudner M., Langebartels C. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars. Exp. Bot. 60 : 4089-4103. https://doi.org/10.1093/jxb/erp243 |
||||
164. Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inzé D., Van Camp W. 1997. Catalase is a sink for h3O2 and is in-dispensable for stress defense in C3 plants. EMBO J. 16 : 4806-4816. https://doi.org/10.1093/emboj/16.16.4806 |
||||
165. Winkel B.S.J. 2008. The biosynthesis of flavonoids. In: The Science of Flavonoids (Ed. Grotewold P.E.). New York : Springer, pp. 71-95. https://doi.org/10.1007/0-387-28822-8_3 |
||||
166. Wu X, Zhu W, Zhang H, Ding H., Zhang H.J. 2011. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol. Plant. 33 : 1199-1209. https://doi.org/10.1007/s11738-010-0648-x |
||||
167. Xin Z., Browse J. 1998. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Natl. Acad. Sci. USA. 95 : 7799-7804. https://doi.org/10.1073/pnas.95.13.7799 |
||||
168. Xu J., Yin H., Yang L., Xie Z, Liu X. 2011. Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. Planta. 233 : 859-871. https://doi.org/10. 1007/s00425-010-1347-y |
||||
169. Yang Y., Yang F., Li X., Shi R., Lu J. 2013. Signal regulation of proline metabolism in callus of the halophyte Ni-traria tangutorum Bobr. grown under salinity stress. Plant Cell Tiss. Org. Cult. 112 : 33-42. https://doi.org/10.1007/s11240-012-0209-7 |
||||
170. Yang T., Poovaiah B.W. 2002. Hydrogen peroxide homeosta-sis: activation of plant catalase by calci-um/calmodulin. Natl. Acad. Sci. USA. 99 : 4097-4102. https://doi.org/10.1073/pnas.052564899 |
||||
171. Yasar F., Uzal O., Yasar O. 2016. Antioxidant enzyme activities and lipidperoxidation amount of pea varieties (Pisum sativum sp. arvense L.) under salt stress. Fresenius Environ. Bull. 25 : 37-42. | ||||
172. Zechmann B., Mauch F., Muller M. 2008. Subcellular immunocytochemical analysis detects the highest con-centrations of glutathione in mitochondria and not in plastids. Exp. Bot. 59 : 4017-4027. https://doi.org/10.1093/jxb/ern243 |
||||
173. Zelinova V., Mistrík I., Pavlovkin J., Tamas L. 2013. Glutathi-one peroxidase expression and activity in barley root tip after short-term treatment with cadmiumhydrogen peroxide and t-butyl hydroperoxide. 250 : 1057-1065. https://doi.org/10.1007/s00709-013-0481-3 |
||||
174. Zeng H. Tang Qi, Hua X. 2010.Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. Plant Growth Regul. 29 : 44-52. https://doi.org/10.1007/s00344-009-9111-x |
||||
175. Zeng C.L., Liu L., Wang B.R., Wu X.M., Zhou Y. 2011.Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Plant. 55 : 345-348. https://doi.org/10.1007/s10535-011-0051-5 |
||||
176. Zhao M.G., Tian Q.Y., Zhang W.H. 2007. Nitric oxide syn-thase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 144 : 206-217. https://doi.org/10.1104/pp.107.096842 |
||||
177. Zhao M.L., Wang J.N., Shan W., Fan J.G., Kuang J.F., Wu K.Q., Li X.P., Chen W.X., He F.Y., Chen J.Y., Lu W.J. 2013.Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ. 36 : 30-51. https://doi.org/10.1111/j.1365-3040.2012.02551.x |
||||
178. Zhao X., Wei P., Liu Z., Yu B., Shi H. 2017. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol. Plant. 39 : https://doi.org/10.1007/s11738-016-2323-3 |
||||
179. Zheng C, Jiang D, Liu F., Dai T., Liu W., Jing Q., Cao W. 2009. Exogenous nitric oxide improves seed ger-mination in wheat against mitochondrial oxidative damage induced by high salinity. Exp. Bot. 67 : 222-227. https://doi.org/10.1016/j.envexpbot.2009.05.002 |
||||
180. Zhifang G., Loescher W.H. 2003. Expression of a celery man-nose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ. 26 : 275-283. https://doi.org/10.1046/j.1365-3040.2003.00958.x |
1. Bilanich M.M. 2008. Modern stage of research of Action of heavy metals as toxic elements for plant. Bull. Precarpathian Nat. Ser. Biology. 7 : 161-175. | ||||
2. Belyavskaya N.A., Fediuk O.M., Zolotareva E.K. 2018. Plants and heavy metals: perception and signaling. Bull. Kharkiv Nat. Agrarian Univ. Ser. (Visn. Hark. nac. agrar. univ., Ser. Biol.). 3 (45) : 10-30. https://doi.org/10.35550/vbio2018.03.010 |
||||
3. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as Regulators of Plant Ontogenesis under Different Growth Conditions. Kyiv : 200 p. | ||||
4. Veselov D.S., Kudoyarova G.R., Kudryakova N.V., Kusnetsov V.V. 2017. Role of cytokinins in stress resistance of plants. Russ. J. Plant Physiol. 64 (1) : 15-27. https://doi.org/10.1134/S1021443717010162 |
||||
5. Zhovinsky E.Ya., Kuraeva I.V. 2002. Geochemistry of heavy metals in soils of Ukraine. Kiev : 213 p. | ||||
6. Karpets Yu.V., Kolupaev Yu.E., Kosakivska I.V. 2016. Nitric oxide and hydrogen peroxide as signal mediators at induction of heat resistance of wheat plantlets by exogenous jasmonic and salicylic acids. Fiziol. rast. genet. 48 (2) : 158-166. https://doi.org/10.15407/frg2016.02.158 |
||||
7. Svitovyi V.M., Gerkiyal O.M., Zhilyak I.D. 2014. Zinc and copper in depleted black soil and winter wheat grown on it. Bull. Dnipropetrovsk State Agrarian and Economic University. 34 : 169-171. | ||||
8. Titov A.F., Talanova V.V., Kaznina N.M. 2011. The Physiological Basis of Plant Resistance to Heavy Metals. Petrozavodsk : 71 p. | ||||
9. Ackova D.G. 2018. Heavy metals and their general toxicity on plants. Plant Sci. Today. 5 : 14-18. https://doi.org/10.14719/pst.2018.5.1.355 |
||||
10. Agami R.A., Mohamed G.F. 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol. Environment. Saf. 94 : 164-171. https://doi.org/10.1016/j.ecoenv.2013.04.013 |
||||
11. Al-Hakimi A.M.A. 2007. Modification of cadmium toxicity in pea seedlings by kinetin. Plant Soil Environ. 53 : 129-135. https://doi.org/10.17221/2228-PSE |
||||
12. Anuradha S., Rao S.S.R. 2007. Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J. Plant Physiol. 12 : 396-400. | ||||
13. Arora P., Bhardwaj R. 2010. 24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol. Mol. Biol. Plants. 16 : 285-293. https://doi.org/10.1007/s12298-010-0031-9 |
||||
14. Atici Ö., Agar G., Battal P. 2005. Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol. Plant. 49 : 215-222. https://doi.org/10.1007/s10535-005-5222-9 |
||||
15. Babenko L.M., Kosakivska I.V., Skaterna T.D. 2015. Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnol. Acta. 8 : 36-51. https://doi.org/10.15407/biotech8.02.036 |
||||
16. Bajguz A. 2002. Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J. Plant Physiol. 159 : 321-324. https://doi. org/10.1078/0176-1617-00654 |
||||
17. Belkadhi A., Djebali W., Hediji H., Chaibi W. 2016. Cellular and signalling mechanisms supporting Cd-tolerance in salicylic acid treated seedlings. Plant Sci. Today. 3 : 41-47. https://doi.org/10.14719/pst.2016.3.1.180 |
||||
18. Besson-Bard A., Gravot A., Richaud P., Auroy P., Taconnat L., Renou J., Pugin A., Wendehenne D. 2009. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol. 149 : 1302-1315. https://doi.org/10.1104/pp.108.133348 |
||||
19. Burnett E.C., Desikan R., Moser R.C., Neill S.J. 2000. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J. Exp. Bot. 51 : 197-205. https://doi. org/10.1093/jexbot/51.343.197 |
||||
20. Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhar R.A., Margis-Pinheiro M. 2017. Interactions between plant hormones and heavy metals responses. Gen. Mol. Biol. 40 : 373-386. https://doi.org/10.1590/1678-4685-gmb-2016-0087 |
||||
21. Camacho-Cristóbal J.J., Martín-Rejano E.M., Herrera-Rodríguez M.B., Navarro-Gochicoa M.T., Rexach J., González-Fontes A. 2015. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J. Exp. Bot. 66 : 3831-3840. https://doi.org/10.1093/jxb/erv186 |
||||
22. Cao S., Xu Q., Cao Y., Qian K., An K., Zhu Y., Binzeng H., Zhao H., Kuai B. 2005. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant. 123 : 57-66. https://doi.org/10.1111/j.1399-3054.2004.00432.x |
||||
23. Cao F., Chen F., Sun H., Zhang G., Chen Z.-H., Wu F. 2014. Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics. 15 : 611-625. https://doi.org/10.1186/1471-2164-15-611 |
||||
24. Chan Z. 2012. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics. 100 : 110-115. https://doi.org/10.1016/j.ygeno.2012.06.004 |
||||
25. Chini A., Gimenez-Ibanez S., Goossens A., Solano R. 2016. Redundancy and specificity in jasmonate signaling. Сurr. Opin. Plant Biol. 33 : 147-156. https://doi.org/10.1016/j.pbi.2016.07.005 |
||||
26. Choudhary S.P., Kanwar M., Bhardwaj R., Gupta B.D., Gupta R.K. 2011. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere. 84 : 592-600. https://doi.org/10.1016/j.chemosphere.2011.03.056 |
||||
27. Colebrook E.H., Thomas S.G., Phillips A.L., Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 217 : 67-75. https://doi.org/10.1242/jeb.089938 |
||||
28. DalCorso G., Farinati S., Furini A. 2010. Regulatory networks of cadmium stress in plants. Plant Signal. Behav. 5 : 663-667. https://doi.org/10.4161/psb.5.6.11425 |
||||
29. Danquah A., de Zelicourt A., Colcombet J., Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32 : 40-52. https://doi.org/10.1016/j.biotechadv.2013.09.006 |
||||
30. Dar T.A., Moin U., Khan M.M.A., Hakeem K.R., Jaleel 2015. Jasmonates counter plant stress: A review. Environ. Exp. Bot. 115 : 49-57. https://doi.org/10.1016/j.envexpbot.2015.02.010 |
||||
31. Davies P.J. 2010. Plant hormones: biosynthesis, signal transduction, action., revised 3rd edn. Dordrecht, Springer : 743 p. | ||||
32. El-Monem A., Sharaf A.E.-M.M., Farghal I.I., Sofy M.R. 2009. Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants. Res. J. Agric. Biol. Sci. 5 : 6-13. | ||||
33. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. 2015. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015 : 1-18. https://doi.org/10.1155/2015/756120 |
||||
34. Fariduddin Q., Yusuf M., Hayat S., Ahmad A. 2009. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ. Exp. Bot. 66 : 418-424. https://doi.org/10.1016/j.envexpbot.2009.05.001 |
||||
35. Farooq H., Asghar H.N., Khan M.Y., Saleem Mand Zahir Z.A. 2015. Auxin-mediated growth of rice in cadmium-contaminated soil. Turkish J. For. Agric. 39 : 272-276. https://doi.org/10.3906/tar-1405-54 |
||||
36. Fediuc E., Lips S.H., Erdei L. 2005. O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J. Plant Physiol. 162 : 865-872. https://doi. org/10.1016/j.jplph.2004.11.015 |
||||
37. Finkelstein R. 2013. Abscisic acid synthesis and response. In: Arabidopsis Book. 11 : e0166. https://doi.org/10.1199/tab.0166 |
||||
38. Gantait S., Sinniah U.R., Ali MN, Sahu N.C. 2015. Gibberellins – a multifaceted hormone in plant growth regulatory network. Curr. Protein Pept. Sci. 16 : 406-412. https://doi.org/10.2174/1389203716666150330125439 |
||||
39. Galvez-Valdivieso G., Fryer M.J., Lawson T., Slattery K., Truman W., Asami T., Davies W.J., Jones A.M., Baker N.R., Mullineaux P.M. 2009. The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell. 21 : 2143-2162. https://doi.org/10.1105/tpc.108.061507 |
||||
40. Gangwar S. , Singh V.P., Prasad M.S., Maurya J.N. 2010. Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci Horticult. 126 : 467-474. https://doi.org/10.1016/j.scienta.2010.08.013 |
||||
41. Gangwar S., Singh V.P., Srivastava P.K., Maurya J.N. 2011. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol. Plant. 33 : 1385-1397. https://doi.org/10.1007/s11738-010-0672-x |
||||
42. Gemrotová M., Kulkarni M.G., Stirk W.A., Strnad M., Van Staden M., Spichal J.L. 2013. Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul. 71 : 137-145. https://doi.org/10.1007/s10725-013-9813-8 |
||||
43. Ghavri S.V., Singh R.P. 2012. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil. J. Environ. Biol. 33 : 207-214. | ||||
44. Gupta R., Chakrabarty S. 2013. Gibberellic acid in plant. Plant Signal Behav. 8 : e25504. https://doi.org/10.4161/psb.25504 |
||||
45. Gupta D.K., Inouhe M., Rodriguez-Serrano M., Romero-Puertas M.C., Sandalio L.M. 2013. Oxidative stress and arsenic toxicity: Role of NADPH oxidase. Chemosphere. 90 : 1987-1996. https://doi.org/10.1016/j.chemosphere.2012.10.066 |
||||
46. Hac-Wydro K., Sroka A., Jablo K. 2016. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead (II) ions in the organization of model lipid membranes. Colloids Surfaces B Biointerfaces. 143 : 124-130. https://doi.org/10.1016/j.colsurfb.2016.03.018 |
||||
47. Hanaka A., Wojcik M., Dreslar S., Mroczek-Zdyrska M., Maksymiec W. 2016. Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with copper? Ecotoxol. Environ. Saf. 124 : 480-488. https://doi.org/10.1016/j.ecoenv.2015.11.024 |
||||
48. Hasan S.A., Hayat S., Ahmad A. 2011. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere. 84 : 1446-1451. https://doi.org/10.1016/j.chemosphere.2011.04.047 |
||||
49. Hashem H.A. 2014. Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany. 92 : 1-7. https://doi.org/10.1139/cjb-2013-0164 |
||||
50. Hayat S., Ali B., Hasan S.A., Ahmad A. 2007. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60 : 33-41. https://doi.org/10.1016/j.envexpbot.2006.06.002 |
||||
51. Hayat S. 2012. Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J. Biol. Sci. 19 : 325-335. https://doi.org/10.1016/j.sjbs.2012.03.005 |
||||
52. Hsu Y.T., Kao C.H. 2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ. 26 : 867-874. https://doi.org/10.1046/j.1365-3040.2003.01018.x |
||||
53. Iglesias M.J., Terrile M.C., Bartoli C.G., D’Ippolito S., Casalongue C.A. 2010. Auxin signalling participates in the adaptive response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol. Biol. 74 : 215-222. https://doi.org/10.1007/s11103-010-9667-7 |
||||
54. Ivanov Y.V., Kartashov A.V., Ivanova A.I., SavochkinV., Kuznetsov V.V. 2016. Effects of zinc on Scots pine (Pinus sylvestris L .) seedlings grown in hydroculture. Plant Physiol. Biochem. 102 : 1-9. https://doi.org/10.1016/j.plaphy.2016.02.014 |
||||
55. Jiao Y., Sun L., Song Y., Wang L., Liu L., Zhang L., Liu B., Li N., Miao C., Hao F. 2013. AtrbohD and AtrbohF positively regulates primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J. Exp. Bot. 64 : 4183-4192. https://doi.org/10.1093/jxb/ert228 |
||||
56. Kanwar M.K., Bhardwaj R., Chowdhary S.P., Arora P., Sharma P., Kumar S. 2013. Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defence of Brassica plants and in vitro cytotoxicity. Acta Physiol. Plant. 35 : 1351-1362. https://doi.org/10.1007/s11738-012-1175-8 |
||||
57. Kapoor D., Rattan A., Gautam V., Kapoor N., Bhardwaj R., Kapoor D., Rattan A., Gautam V., Kapoor N. 2014. 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Physiol. Biochem. 10 : 110-121. | ||||
58. Keunen E., Schellingen K., Vangronsveld J., Cuypers A. 2016. Ethylene and metal stress: Small molecules, big molecules. Front. Plant Sci. 7 : 23. https://doi.org/10.3389/fpls.2016.00023 |
||||
59. Khan N.A., Nazar R., Iqbal N., Anjum N.A. 2012. Phytohormones and abiotic stress tolerance in plants. Berlin. Springer Verlag. : 308 p. https://doi.org/10.1007/978-3-642-25829-9 |
||||
60. Khan A.L., Lee I.J. 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 13 : 86. https://doi.org/10.1186/1471-2229-13-86 |
||||
61. Khan M.I.R., Khan N.A. 2014. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma. 251 : 1007-1019 https://doi.org/10.1007/s00709-014-0610-7 |
||||
62. Khan A.L., Waqas M., Hussain J., Al-Harrasi A., Hamayun M., Lee I.J. 2015a. Phytohormones enabled endophytic fungal symbiosis improves aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J. Hazard. Mater. 295 : 70-78. https://doi.org/10.1016/j.jhazmat.2015.04. 008 |
||||
63. Khan M.I.R., Nazir F., Asgher M., Per T.S., Khan N.A. 2015b. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173 : 9-18. https://doi.org/10.1016/j.jplph.2014.09.011 |
||||
64. Kim Y-H., Khan A.L., Kim D.H., Lee S.Y., Kim K-M., Waqas M., Jung H-Y., Shin J.H., Kim J.G., Lee I.J. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14 : 13. https://doi.org/10.1186/1471-2229-14-13 |
||||
65. Knetsch M.L.W., Wang M., Snaar-Jagalska E., Heimovaara-Dijkstrab S. 1996. Abscisic acid induces Mitogen-Activated Protein Kinase activation in barley aleurone protoplasts. Plant Cell. 8 : 1061-1067. https://doi.org/10.1105/tpc.8.6.1061 |
||||
66. Kong J., Dong Y., Xu L., Liu S., Bai X. 2014. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot. Studies. 55 : 9. https://doi.org/10.1186/1999-3110-55-9 |
||||
67. Khripach V., Zhabinskii V., Groot A.D. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for XXI century. Ann. Bot. 86 : 441-447. https://doi.org/10.1006/anbo.2000.1227 |
||||
68. Lequeux H., Hermans C., Lutts S., Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48 : 673-682. https://doi. org/10.1016/j.plaphy.2010.05.005 |
||||
69. Lewis D.R., Negi S., Sukumar P., Munday G.K. 2011. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development. 13 : 3485- https://doi.org/10.1242/dev.065102 |
||||
70. Leymarie J., Vitkauskaite G., Hoang H.H., Gendreau E., Chazoule V., Meimoun P., Corbineau F., El-Maarouf-Bouteau H., Bailly C. 2012. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol. 53 : 96-106. https://doi.org/10.1093/pcp/pcr129 |
||||
71. Liphadzi M.S., Kirkham M.B., Paulsen G.M. 2006. Auxin enhanced root growth for phytoremediation of sewage sludge amended soil. Environ. Technol. 27 : 695-704. https://doi.org/10.1080/09593332708618683 |
||||
72. Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development. 140 : 943-950. https://doi.org/10.1242/dev.086363 |
||||
73. Maksymiec W., Wójcik M., Krupa Z. 2007. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere. 66 : 421- https://doi.org/10.1016/j.chemosphere.2006.06.025 |
||||
74. Maksymiec W. 2007. Signaling responses in plants to heavy metal stress. Acta Physiol. Plant. 29 : 177- https://doi.org/10.1007/s11738-007-0036-3 |
||||
75. Masood A., Iqbal N., Khan N.A. 2012. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by Sulphur in mustard. Plant Cell Environ. 35 : 524-533. https://doi. org/10.1111/j.1365-3040.2011.02432.x |
||||
76. Masood A., Khan M.I.R., Fatma M., Asgher M., Per T.S., Khan N.A. 2016. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiol. Biochem. 104 : 1-10. https://doi.org/10.1016/j.plaphy.2016.03.017 |
||||
77. Mathur S., Kalaji H.M., Jajoo A. 2016. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica. 54 : 1-9. https://doi.org/10.1007/s11099-016-0198-6 |
||||
78. Maksymiec W. 2011. Effects of jasmonate and some other signaling factors on bean and onion growth during the initial phase of cadmium action. Biol. Plant. 55 : 112-118. https://doi.org/10.1007/s10535-011-0015-9 |
||||
79. Meng H., Hua S., Shamsi I.H., Jilani G., Li Y., Jiang L. 2009. Cadmium- induced stress on the seed germination and seedling growth of Brassica napus and its alleviation through exogenous plant growth regulators. Plant Growth Regul. 58 : 47-59. https://doi.org/10.1007/s10725-008-9351-y |
||||
80. Metwally A., Finkemeier I., Georgi M., Dietz K.J. 2003. Salicylic acid alleviates the cadmium toxicity in barley (Hordeum vulgare) seedlings. Plant Physiol. 132 : 272-281. https://doi.org/10.1104/pp.102.018457 |
||||
81. Mohan T.C., Castrillo G., Navarro C., Zarco-Fernandez S., Ramireddy E., Mateo C., Zanarreno A.M., Paz-Ares J., Munoz R., Garcia-Mina J.M., Hernandez L.E., Schmulling T., Leyva A. 2016. Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol. 171 : 1418-1426. https://doi.org/10.1104/pp.16.00372 |
||||
82. Monni S., Uhlig C., Hansen E., Magel E. 2001. Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ. Pollut. 112 : 121-129. https://doi.org/10.1016/S0269-7491(00)00125-1 |
||||
83. Moya J.L., Ros R.,d Picazo I. 1995. Heavy metal-hormone interactions in rice plants: Effects on growth, net photosynthesis, and carbohydrate distribution. J. Plant Growth Regul. 14 : 61-67. https://doi.org/10.1007/BF00203115 |
||||
84. Mukhopadhyay M., Mondal T.K. 2015. Effect of zinc and boron on growth and water relations of Camellia sinensis (L.) O. Kuntze cv. T-78. Natl. Acad. Sci. Lett. 38 : 283-286. https://doi.org/10.1007/s40009-015-0381-5 |
||||
85. Munzuro Ö., Fikriye K.Z., Yahyagil Z. 2008. The abscisic acid levels of wheat (Triticum aestivum L. cv. Çakmak 79) seeds that were germinated under heavy metal (Hg++, Cd++, Cu++) stress. G.U. Journal of Science. 21 : 1-7. | ||||
86. Nambara E., Okamoto M., Tatematsu K., Yano R., Seo M., Kamiya Y. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20 : 55-67. https://doi.org/10.1017/S0960258510000012 |
||||
87. Nishiyama R., Watanabe Y., Fujita Y., Le D.T., Kojima M., Werner T., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Kakimoto T., Sakakibara H., Schmülling T., Tran L.S. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 23 : 2169-2183. https://doi.org/10.1105/tpc.111.087395 |
||||
88. Nomura T., Itouga M., Kojima M., Kato Y., Sakakibara H. 2015. Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae. J. Exp. Bot. 66 : 1205-1213. https://doi.org/10.1093/jxb/eru470 |
||||
89. Olds C.L., Glennon E.K.K., Luckhart S. 2018. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes and Infection. 34 : 1-40. | ||||
90. Opdenakker K., Remans T., Keunen E., Vangronsveld J., Cuypers A. 2012. Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ. Exp. Bot. 83 : 53-61 https://doi.org/10.1016/j.envexpbot.2012.04.003 |
||||
91. Ostrowski M., Ciarkowska A., Jakubowska A. 2016. The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 191 : 63-72. https://doi.org/10.1016/j.jplph.2015.11.012 |
||||
92. Pandey C., Gupta M. 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J. Hazard Mater. 287 : 384-391. https://doi.org/10.1016/j.jhazmat.2015.01.044 |
||||
93. Pandolfini T., Gabbrielli R., Ciscato M. 1996. Nickel toxicity in two durum wheat cultivars differing in drought sensitivity. J. Plant Nutr. 19 : 1611-1627. https://doi.org/10.1080/01904169609365225 |
||||
94. Pantin F., Monnet F., Jannaud D., Costa J.M., Renaud J., Muller B., Simonneau T., Genty B. 2013. The dual effect of abscisic acid on stomata. New Phytol. 197 : 65-72. https://doi.org/10.1111/nph.12013 |
||||
95. Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C. 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 32 : 539-548. https://doi.org/10.1046/j.1365-313X.2002.01442.x |
||||
96. Peto A., Lehotai N., Lozano-Juste J., León J., Tari I., Erdei L., Kolbert Z. 2011. Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann. Bot. 108 : 449-457. https://doi.org/10.1093/aob/mcr176 |
||||
97. Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska- Zylkiewicz B. 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 52 : 52-65. https://doi.org/10.1016/j.plaphy.2011.11.009 |
||||
98. Poonam S., Kaur H., Geetika S. 2013. Effect of jasmonic acid on photosynthetic pigments and stress makers in Cajanus cajan (L.) Milsp. seedlings under copper stress. Amer. J. Plant Sci. 4 : 817-823. https://doi.org/10.4236/ajps.2013.44100 |
||||
99. Poschenrieder C., Gunsé B., Barceló J. 1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol. 90 : 1365-1371. https://doi.org/10.1104/pp.90.4.1365 |
||||
100. Rady M.M. 2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Horticult. 129 : 232-237. https://doi.org/10.1016/j.scienta.2011.03.035 |
||||
101. Rady M.M., Osman A.S. 2012. Response of growth and antioxidant system of heavy metal-contaminated tomato plants to 24-epibrassinolide. Afr. J. Agric. Res. 7 : 3249-3254. https://doi. org/10.5897/AJAR12.079 |
||||
102. Rajewska I., Talarek M., Bajguz A. 2016. Brassinosteroids and Response of Plants to Heavy Metals Action. Front. Plant Sci. 7 : 1-5. https://doi.org/10.3389/fpls.2016.00629 |
||||
103. Ramakrishna B., Rao S.S.R. 2013. Preliminary studies on the involvement of glutathione metabolism and redox status against zinc toxicity in radish seedlings. Environ. Exp. Bot. 96 : 52-58. https://doi.org/10.1016/j.envexpbot.2013.08.003 |
||||
104. Rauser W.E., Dumbroff E.B. 1981. Effects of excess cobalt, nickel and zinc on the water relations of Phaseolus vulgaris. Environ. Exp. Bot. 21 : 249-255. https://doi.org/10.1016/0098-8472(81)90032-0 |
||||
105. Rodriguez-Serrano M., Romero-Puertas M.C., Pazmino D. M., Testillano P.S., Risueno M.C., del Rio L.A., Sandalio L.M. 2009. Cellular responses of pea plants to cadmium toxicity: Cross talk between ROS, Nitric oxide and calcium. Plant Physiol. 150 : 229-243. https://doi.org/10.1104/pp.108.131524 |
||||
106. Romanov G.A. 2009. How do cytokinins affect the cell? Russ. Plant Physiol. 56 : 268-290. https://doi.org/10.1134/S1021443709020174 |
||||
107. Rubio M.I., Escrig I., Martinez-Cortina C., Lopez-Benet F.J., Sanz A. 1994. Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul. 14 : 151-157. https://doi.org/10.1007/BF00025217 |
||||
108. Ruzicka K., Ljung K., Vanneste S., Podhorská R., Beeckman T.D., Friml J., Benková E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell. 19 : 2197-2212. https://doi.org/10.1105/tpc.107.052126 |
||||
109. Sah S.K., Reddy K.R., Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 7 : 1-26. https://doi.org/10.3389/fpls.2016.00571 |
||||
110. Salt D.E., Prince R.C., Pickering I.J., Raskin I. 1995. Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol. 109 : 1427-1433. https://doi.org/10.1104/pp.109.4.1427 |
||||
111. Sauter A., Davies W.J., Hartung W. 2001. The long-distance abscisic acid signal in the droughted plant: The fate of the hormone on its way from root to shoot. J. Exp. Bot. 52 : 1991-1997. https://doi.org/10.1093/jexbot/52.363.1991 |
||||
112. Schat H., Sharma S.S., Vooijs R. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant. 101 : 477-482. https://doi.org/10.1111/j.1399-3054.1997.tb01026.x |
||||
113. Schellingen K., Straeten Van Der, Vandenbussche F., Prinsen E., Remans T. 2014. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol. 14 : 214. https://doi.org/10.1186/s12870-014-0214-6 |
||||
114. Schopfer P. 2001. Hydroxyl radical-induced cell wall loosening in vitro and in vivo: Implications for the control of elongation growth. Plant J. 28 : 679-688. https://doi.org/10.1046/j.1365-313x.2001.01187.x |
||||
115. Shan X., Yan J., Xie D. 2012. Comparison of phytohormones signaling mechanisms. Curr. Opin. Plant Biol. 15 : 84-91. https://doi.org/10.1016/j.pbi.2011.09.006 |
||||
116. Sharaf A.E.M.M., Farghal I.I,, Sofy M.R. 2009. Role of gibberellic acid in abolishing the detrimental effects of cadmium and lead on the broad bean and lupin plants. Res. J. Agric. Biol. Sci. 5 : 668-673. | ||||
117. Sharma I., Pati P.K., Bhardwaj R. 2011a. Effect of 24-epibrassinolide on oxidative stress markers induced by nickelion in Raphanus sativus L. Acta Physiol. Plant. 33 : 1723-1735. https://doi.org/10.1007/s11738-010-0709-1 |
||||
118. Sharma I., Pati P.K., Bhardwaj R. 2011b. Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicol. 20 : 862-874. https://doi.org/10.1007/s10646-011-0650-0 |
||||
119. Shi G.R., Cai Q.S., Liu Q.Q., Wu L. 2009. Salicylic acid-mediated alleviation of cadmium-toxicity in hemp plants in relation to cadmium uptake, photosynthesis and antioxidant enzymes. Acta Physiol. Plant. 31 : 969-977. https://doi.org/10.1007/s11738-009-0312-5 |
||||
120. Shi W.G., Li H., Liu T.X., Polle A., Peng C.H., Luo Z.B. 2015. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ. 38 : 207-223. https://doi.org/10.1111/pce.12434 |
||||
121. Shukla A., Srivastava S., Suprasanna P. 2017. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr. 18 : 512-522. https://doi.org/10.2174/1389202918666170608093327 |
||||
122. Siddiqui M.H., Al-Whahibi M.H., Basalah M.O. 2011. Interactive effect of calcium and gibberellins on nickel tolerance in relation to antioxidant system in Triticum aestivum L. Protoplasma. 248 : 503-511. https://doi.org/10.1007/s00709-010-0197-6 |
||||
123. Singh S., Prasad S.M. 2014. Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci. Horticult. 176. 1-10. https://doi.org/10.1016/j.scienta.2014.06.022 |
||||
124. Singh A.P., Dixit G., Mishra S., Dwivedi S., Tiwari M., Mallick S., Pandey V., Trivedi P.K., Chakrabarty D., Tripathi R.D. 2015. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci. 6 : 340. https://doi.org/10.3389/fpls.2015.00340 |
||||
125. Singh V.P., Kumar J., Singh M., Singh S., Prasad S.M., Dwivedi R., Singh M.P.V.V.B. 2016. Role of salicylic acid-seed priming in the regulation of Cr(VI) and UV-B toxicity in maize seedlings. Plant Growth Regul. 78 : 79-91. https://doi.org/10.1007/s10725-015-0076-4 |
||||
126. Sirhindi G., Mir M.A., Sharma P., Gill S Singh, Kaur Harpreet, Mushtaq R. 2015. Modulatory role of jasmonic acid on photosynthesis pigments, antioxidants and stress makers of Glycine max L. under nickel stress. Physiol. Mol. Biol. Plant. 21 : 559-565. https://doi.org/10.1007/s12298-015-0320-4 |
||||
127. Srivastava A.K., Venkatachalam P., Raghothama K.G., Sahi S.V. 2007. Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta. 225 : 1353-1365. https://doi.org/10.1007/s00425-006-0445-3 |
||||
128. Srivastava S., Srivastava A.K., Suprasanna P., D’Souza S.F. 2009. Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J. Exp. Bot. 60 : 3419-3431. https://doi.org/10.1093/jxb/erp181 |
||||
129. Srivastava S., Chiappetta A., Beatrice M. 2013. Identification and profiling of arsenic stress-induced miRNAs in Brassica juncea. J. Exp. Bot. 64 : 303-315. https://doi.org/10.1093/jxb/ers333 |
||||
130. Steffens B. 2014. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 5 : 685. https://doi.org/10.3389/fpls.2014.00685 |
||||
131. Stroinski A., Chadzinikolau T., Gizewska K., Zielezinska M. 2010. ABA or cadmium induced phytochelatin synthesis in potato tubers. Biol. Plant. 54 : 117-120. https://doi.org/10.1007/s10535-010-0017-z |
||||
132. Swarup R., Perry P., Hagenbeek D., Van Der Staeten, Beemster G.T.S., Sandberg G., Bhalerao R., Ljung K., Bennett M.J. 2007. Ethylene regulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 19 : 2186-2196. https://doi.org/10.1105/tpc.107.052100 |
||||
133. Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. 2008. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science. 321 : 952-956. https://doi.org/10.1126/science.1156970 |
||||
134. Tandon S.A., Kumar R., Parsana S. 2015. Auxin treatment of wetland and non-wetland plant species to enhance their phytoremediation efficiency to treat municipal wastewater. J. Sci. Ind. Res. 74 : 702-707. | ||||
135. Thomas J.C., Perron M., LaRosa P.C., Smigocki A.C. 2005. Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol. Plant. 123 : 262-271. https://doi.org/10.1111/j.1399-3054.2005.00440.x |
||||
136. Trinh N., Huang T., Chi W., Fu S., Chen C. 2014. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol. Plant. 150 : 205-224. https://doi.org/10.1111/ppl.12088 |
||||
137. Vardhini B.V. 2014. Brassinosteroids role for amino acids, peptides and amines modulation in stressed plants (A review). In: Plant Adaptation to Environmental Change: Significance of Amino Acids and their Derivatives. Wallingford : CAB International : 300-316. https://doi.org/10.1079/9781780642734.0300 |
||||
138. Vassilev A., Lidon F., Scotti P., Da Graca M., Yordanov I. 2004. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol. Plant. 48 : 153-156. https://doi.org/10.1023/B:BIOP.0000024295.27419.89 |
||||
139. Vasyuk V.A., Voytenko L.V., Shcherbatiuk M.M., Kosakivska I.V. 2019. Effect of exogenous abscisic acid on seed germination and growth of winter wheat seedlings under zinc stress. J. Stress Physiol. Biochem. 15 : 68-78. | ||||
140. Vernay P., Gauthier-Moussard C., Hitmi A. 2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere. 68 : 1563-1575. https://doi.org/10.1016/j.chemosphere.2007.02.052 |
||||
141. Veselov D.S., Kudoyarova G.R., Kudryakova, N.V., Kusnetsov V.V. 2017. Role of cytokinins in stress resistance of plants. Russ. J. Plant Physiol. 64 (1) : 15-27. https://doi.org/10.1134/S1021443717010162 |
||||
142. Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R., Kumar V., Verma R., UpadhyayG., Pandey M., Sharma S. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant sci. 28 : 161-173. https://doi.org/10.3389/fpls.2017.00161 |
||||
143. Vodnik D., Gaberscik A., Gogala N. 1999. Lead phototoxicity in Norway spruce: the effects of lead and zeatin-riboside on root respiratory potential. Phyton. 39 : 155-159. | ||||
144. Wang J., Chen J., Pan K. 2013. Effect of exogenous abscisic acid on the level of antioxidants in Atractylodesma crocephala Koidz under lead stress. Environ. Sci. Pollut. Res. 20 : 1441-1449. https://doi.org/10.1007/s11356-012-1048-0 |
||||
145. Wang R., Wang J., Zhao L., Yang S., Song Y. 2014a. Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. BioMetals. 28 : 123-132. https://doi.org/10.1007/s10534-014-9808-6 |
||||
146. Wang Y., Wang Y., Kai W., Zhao B., Chen P., Sun L., Ji K., Li Q., Dai S., Sun Y., Ji K., Li Q., Dai S., Sun, Wang Y., Pei Y., Leng P. 2014b. Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiol. Biochem. 76 : 67-76. https://doi.org/10.1016/j.plaphy.2014.01.003 |
||||
147. Wilkinson S., Davies W.J. 2002. ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant Cell Environ. 25 : 195-210. https://doi.org/10.1046/j.0016-8025.2001.00824.x |
||||
148. Wilkinson S., Davies, W.J. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 33 : 510-525. https://doi.org/10.1111/j.1365-3040.2009.02052.x |
||||
149. Xia X., Wang Y., Zhou Y., Tao Y., Mao W., Shi K., Asami T., Chen Z., Yu J. 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance. Plant Physiol. 150 : 801-814. https://doi.org/10.1104/pp.109.138230 |
||||
150. Xu Y-X., Mao J., Chen W., Qian T-T., Liu S-C., Hao W-J., Li C-F., Chen L. 2016. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiol. Biochem. 98 : 46-56. https://doi.org/10.1016/j.plaphy.2015.11.014 |
||||
151. Yeh C., Hung W., Huang H. 2003. Copper treatment activates mitogen-activated protein kinase signalling in rice. Physiol. Plant. 119 : 392-399. https://doi.org/10.1034/j.1399-3054.2003.00191.x |
||||
152. Yeh C., Hsiao L., Huang H. 2004. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol. 45 : 1306-1312. https://doi.org/10.1093/pcp/pch235 |
||||
153. Yeh C.M., Chien P.S., Huang H.J. 2007. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot. 58 : 659-671. https://doi.org/10.1093/jxb/erl240 |
||||
154. Yoon G.M., Kieber J.J. 2013. 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AoB Plants. 5 : plt017. https://doi.org/10.1093/aobpla/plt017 |
||||
155. Yu L., Luo Y.F., Liao B., Xie L.J., Chen L., Xiao S., Li J., Hu S., Shu W. 2012. Comparative transcriptomics analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol. 195 : 97-112. https://doi.org/10.1111/j.1469-8137.2012.04154.x |
||||
156. Yuan H., Huang X. 2016. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 39 : 120-135. https://doi.org/10.1111/pce.12597 |
||||
157. Yusuf M., Fariduddin Q., Hayat S., Hasan S.A., Ahmad A. 2010. Protective response of 28-Homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch. Environ. Contam. Toxicol. 60 : 68-76. https://doi.org/10.1007/s00244-010-9535-0 |
||||
158. Yusuf M., Fariduddin Q., Ahmad A. 2012. 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiate under different levels of nickel: A shotgun approach. Plant Physiol. Biochem. 57 : 143-153. https://doi.org/10.1016/j.plaphy.2012.05.004 |
||||
159. Zelinová V., Alemayehu A., Bocová B., Huttová J., Tamás L. 2015. Cadmium-induced reactive oxygen species generation, changes in morphogenic responses and activity of some enzymes in barley root tip are regulated by auxin. Biologia. 70 : 356-364. https://doi.org/10.1515/biolog-2015-0035 |
||||
160. Zhang Y., Zheng G.H., Liu P., Song J.M., Xu G.D., Cai M.Z. 2011. Morphological and physiological responses of root tip cells to Fe2+ toxicity in rice. Acta Physiol. Plant. 33 : 683-689. https://doi.org/10.1007/s11738-010-0590-y |
||||
161. Zhang F., Zhang H., Xia Y., Wang G., Xu L., Shen Z. 2011. Exogenous application of salicylic acid alleviates Cd-toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep. 30 : 1475-1483. https://doi.org/10.1007/s00299-011-1056-4 |
||||
162. Zhao H., Wu L., Chai T., Zhang Y., Tan J., Ma S. 2012. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J. Plant Physiol. 169 : 1243-1252. https://doi.org/10.1016/j.jplph.2012.04.016 |
||||
163. Zhu X.F., Jiang T., Wang Z.W., Lei G.J., Shi Y.Z., Li G.X., Zheng S.J. 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazard. Mater. 239 : 302-307. https://doi.org/10.1016/j.jhazmat.2012.08.077 |
||||
164. Zhu X.F., Wang Z.W., Dong F., Lei G.J., Shi Y.Z., Li G.X., Zheng S.J. 2013. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J. Hazard. Mater. 263 : 398-403. https://doi.org/10.1016/j.jhazmat.2013.09.018 |
1. Kolupaev Yu.E., Oboznyi A.I. 2013. Reactive oxygen species and antioxidative system at cross adaptation of plants to activity of abiotic stressors. Visn. Hark. nac. agrar. univ., Ser. Biol. 3 (30) : 18-31. | ||||
2. Arisi A.C.M., Cornic G., Jouanin L., Foyer C.H. 1998. Over-expression of Iron superoxide dismutase in trans-formed poplar modifies the regulation of photosyn-thesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol. 117 : 565-574. https://doi.org/10.1104/pp.117.2.565 |
||||
3. Bagnoli F., Capuana M., Racchi M.L. 1998. Developmental changes of catalase and superoxide dismutase isoenzymes in zygotic and somatic embryos of horse chestnut. Aust. J. Plant Physiol. 25 : 909-913. https://doi.org/10.1071/PP98068 |
||||
4. Bai X., Liu J., Tang L., Cai H., Chen M., Ji W., Liu Y., Zhu Y. 2013. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct. Plant Biol. 40 : 1048-1056. https://doi.org/10.1071/FP12377 |
||||
5. Bowler C., van Montagu M., Inzé D. 1992. Superoxide dis-mutase and stress tolerance. Ann. Rev. Plant Phys-iol. Plant Mol.Biol. 43 : 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503 |
||||
6. Bueno P., Varela J., Gimenez-Gallego G., del Rio L.A. 1995. Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons. Plant Physiol. 108 : 1151-1160. https://doi.org/10.1104/pp.108.3.1151 |
||||
7. Chatzidimitriadou K., Nianiou-Obeidat I., Madesis P., Perl-Treves R. 2009. Expression of SOD transgene in pepper confers stress tolerance and improves shoot re-generation. Electron. J. Biotechnol. 12 (4). https://doi.org/10.2225/vol12-issue4-fulltext-10 |
||||
8. Cheng Y.J., Deng X.P., Kwak S.S. 2013. Enhanced tolerance of transgenic potato plants expressing choline oxi-dase in chloroplasts against water stress. Bot. Stud. 54 : 30. https://doi.org/10.1186/1999-3110-54-30 |
||||
9. Choi S.M., Jeong S.W., Jeong W.J., Kwon S., Chow W., Park Y.I. 2002. Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta. 216 : 315-324. https://doi.org/10.1007/s00425-002-0852-z |
||||
10. Cohu C.M., Pilon M. 2007. Regulation of superoxide dis-mutase expression by copper availability. Physiol. Plant. 129 : 747-755. https://doi.org/10.1111/j.1399-3054.2007.00879.x |
||||
11. Cui K., Xing G., Liu X., Gengmei X., Yafu W. 1999. Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L.. Plant Sci. 146 : 9-16. https://doi.org/10.1016/S0168-9452(99)00087-4 |
||||
12. Devi P.S., Satyanarayana B., Arundhati A., Rao T.R. 2013. Activity of antioxidant enzymes and secondary metabolites during in vitro regeneration of Sterculia urens. Biol. Plant. 57 : 778-782. https://doi.org/10.1007/s10535-013-0337-x |
||||
13. Diaz-Vivancos P., Barba-Espin G., Clemente-Moreno M.J., Hernandez J.A. 2010.Characterization of the antioxidant system during the vegetative development of pea plants. Biol. Plant. 54 :76-82. https://doi.org/10.1007/s10535-010-0011-5 |
||||
14. Dong C., Zhang Z., Ren J., Qin Y., Huang J., Wang Y., Cai B., Wang B., Tao J. 2013. Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in to-bacco. Plant Physiol.Biochem. 71 : 212-217. https://doi.org/10.1016/j.plaphy.2013.07.012 |
||||
15. Dugas D.V., Bartel B. 2008. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol. 67 : 403-417. https://doi.org/10.1007/s11103-008-9329-1 |
||||
16. Erdal S., Dumlupinar R. 2011. Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. Acta Physiol. Plant. 33 : 1011-1017. https://doi.org/10.1007/s11738-010-0634-3 |
||||
17. Faize M., Faize L., Petri C., Barba-Espin G., Diaz-Vivancos P., Clemente-Moreno M.J., Koussa T., Rifai L.A., Burgos L., Hernandez J.A. 2013. Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. J. Plant Physiol. 170 : 625-632. https://doi.org/10.1016/j.jplph.2012.12.016 |
||||
18. Farooq M., Basra S.M.A., Wahid A., Cheema Z. A., Cheema M. A., Khaliq A. 2008. Physiological role of ex-ogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agronomy Crop Sci. 194 : 325-333. https://doi.org/10.1111/j.1439-037X.2008.00323.x |
||||
19. Feng W., Hongbin W., Bing L., Jinfa W. 2006. Cloning and characterization of a novel splicing isoform of the iron-superoxide dismutase gene in rice (Oryza sativa L.). Plant Cell Rep. 24 : 734-742. https://doi.org/10.1007/s00299-005-0030-4 |
||||
20. Fridovich I. 1989.Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol.Chem. 264 : 7761-7764. | ||||
21. Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutases. II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 59. 315-318. https://doi.org/10.1104/pp.59.2.315 |
||||
22. Gupta S.A., Webb R.P., Holaday A.S., Allen R.D. 1993. Over-expression of superoxide dismutase protects plants from oxidative stress (Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol. 103 : 1067-1073. https://doi.org/10.1104/pp.103.4.1067 |
||||
23. Hasanuzzaman M., Hossain A.M., Teixeira da Silva J.A., Fujita M. 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies (eds.Venkateswarlu B. et al.). Springer Netherlands : 261-315. https://doi.org/10.1007/978-94-007-2220-0_8 |
||||
24. He S., Han Y., Wang Y., Zhai H., Liu Q. 2009. In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tiss Organ Cult. 96 : 69-74. https://doi.org/10.1007/s11240-008-9461-2 |
||||
25. Hosseini M., Maali-Amiri R., Mahfoozi S., Fowler D.B., Mohammadi R. 2016. Developmental regulation of metab-olites and low temperature tolerance in lines of crosses between spring and winter wheat. Acta Physiol Plant. 38 : 87. https://doi.org/10.1007/s11738-016-2103-0 |
||||
26. Houmani H., Rodríguez-Ruiz M., Palma J.M., Abdelly C., Corpas F.J. 2016. Modulation of superoxide dis-mutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile mari-tima. Protoplasma. 253 : 885-894. https://doi.org/10.1007/s00709-015-0850-1 |
||||
27. Jackson C., Dench J., Moore A. L., Halliwell B., Foyer C.H., Hall D.O. 1978. Subcellular localisation and iden-tification of superoxide dismutase in the leaves of higher plants. Europ. J. Biochem. 91 : 339-344. https://doi.org/10.1111/j.1432-1033.1978.tb12685.x |
||||
28. Jiang J., Su M., Chen Y., Gao N., Jiao C., Sun Z., Li F., Wang C. 2013. Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia. 68 : 231-240. https://doi.org/10.2478/s11756-013-0003-y |
||||
29. Jung S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci. 166 : 459-466. https://doi.org/10.1016/j.plantsci.2003.10.012 |
||||
30. Karimi R., Ershadi A., Nejad A.R., Khanizadeh S. 2016. Abscisic acid alleviates the deleterious effects of cold stress on ‘Sultana’ grapevine (Vitis vinifera L.) plants by improving the anti-oxidant activity and photosynthetic capacity of leaves. J. Horticult. Sci. Biotechnol. 91 : 386-395. https://doi.org/10.1080/14620316.2016.1162027 |
||||
31. Karuppanapandian T., Moon J.C., Kim C., Mano-haran K., Kim W. 2011. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 5 : 709-725. | ||||
32. Khan M.N., Siddiqui M.H., Mohammad F., Naeem M., Khan M.M.A. 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant. 32 : 121-132. https://doi.org/10.1007/s11738-009-0387-z |
||||
33. Kim M.D., Kim Y.H., Kwon S.Y., Yun D.J., Kwak S.S., Lee H.S. 2010. Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZ-nSOD, APX and NDPK2 genes. Physiol. Plant. 140 : 153-162. https://doi.org/10.1111/j.1399-3054.2010.01392.x |
||||
34. Lee Y.P., Ahmad R., Lee H.S., Kwak S.-S., Shafqat M.N., Kwon S.Y. 2013. Improved tolerance of Cu/Zn superoxide dismutase and ascorbate peroxidase expressing transgenic tobacco seeds and seedlings against multiple abiotic stresses. Int. J. Agric. Biol. 15 : 725-730. | ||||
35. Li C., Han L.B., Zhang X. 2012. Enhanced drought tolerance of tobacco overexpressing OjERF gene is associated with alteration in proline and antioxidant metabolism. J. Amer. Soc. Hort. Sci. 137 : 107-113. https://doi.org/10.21273/JASHS.137.2.107 |
||||
36. Libik M., Konieczny R., Pater B., Ślesak I., Miszalski Z. 2005. Differences in the activities of some antioxidant enzymes and in h3O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep. 23 : 834-841. https://doi.org/10.1007/s00299-004-0886-8 |
||||
37. Luo J.P., Jiang S.T., Pan L.J. 2001. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with h3O2 production and h3O2-metabolizing enzyme activities. Plant Sci. 161 : 125-132. https://doi.org/10.1016/S0168-9452(01)00401-0 |
||||
38. Luo X., Wu J., Li Y., Nan Z., Guo X., Wang Y., Zhang A., Wang Z., Xia G., Tian Y. 2013. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS ONE. 8 : e54002. https://doi.org/10.1371/journal.pone.0054002 |
||||
39. Ma L., Xie L., Lin G., Jiang S., Chen H., Li H., Takáč T., Šamaj J., Xu C. 2012. Histological changes and differences in activities of some antioxidant enzymes and hydrogen peroxide content during somatic embryogenesis of Musa AAA cv. Yueyoukang 1. Sci. Hortic. 144 : 87-92. https://doi.org/10.1016/j.scienta.2012.06.039 |
||||
40. Martinez C.A., Loureiro M.E., Oliva M.A., Maestri M. 2001. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci. 160 : 505-515. https://doi.org/10.1016/S0168-9452(00)00418-0 |
||||
41. Martins L.L., Mourato M.P., Cardoso A.I., Pinto A.P., Mota A.M., Gonçalves M.L.S., de Varennes A. 2011. Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol. Plant. 33 : 1375-1383. https://doi.org/10.1007/s11738-010-0671-y |
||||
42. Matamoros M.A., Loscos J., Dietz K.J., Aparicio-Tejo P.M., Becana M. 2010.Function of antioxidant enzymes and metabolites during maturation of pea fruits. J. Exp. Bot. 61 : 87-97. https://doi.org/10.1093/jxb/erp285 |
||||
43. McCord J.M., Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244 : 6049-6055. | ||||
44. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 : 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9 |
||||
45. Mittova V., Guy M., Tal M., Volokita M. 2002. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic. Res. 36 : 195-202. https://doi.org/10.1080/10715760290006402 |
||||
46. Mostofa M.G., Hossain M.A., Fujita M. 2015. Trehalose pre-treatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma. 252 : 461-475. https://doi.org/10.1007/s00709-014-0691-3 |
||||
47. Myouga F., Hosoda C., Umezawa T., Iizumi H., Ku-romori T., Motohashi R., Shono Y., Nagata N., Ikeuchi M., Shinozakia K. 2008. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell. 20 : 3148-3162. https://doi.org/10.1105/tpc.108.061341 |
||||
48. Nath K., Kumar S., Poudyal R.S., Yang Y.N., Timilsina R., Park Y.S., Nath J., Chauhan P.S., Pant B., Lee C.H. 2014. Developmental stage-dependent differential gene expression of superoxide dismutase isoenzymes and their localization and physical interaction network in rice (Oryza sativa L.). Genes Genomics. 36 : 45-55. https://doi.org/10.1007/s13258-013-0138-9 |
||||
49. Panda S.K., Khan M.H. 2004. Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz. J. Plant Physiol. 16 : 115-118. https://doi.org/10.1590/S1677-04202004000200007 |
||||
50. Pandey P., Srivastava R.K., Dubey R.S. 2014.Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. Protoplasma. 251 : 147-160. https://doi.org/10.1007/s00709-013-0533-8 |
||||
51. Petrić M., Jevremović S., Trifunović M., Tadić V., Mi-lošević S., Subotić A. 2014. Activity of antioxidant enzymes during induction of morphogenesis of Fritil-laria meleagris in bulb scale culture. Turk. J. Biol. 38 : 328-338. https://doi.org/10.3906/biy-1309-45 |
||||
52. Pilon M., Ravet K., Tapken W. 2011. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim. Biophys. Acta. Bioenerg. 1807 : 989-998. https://doi.org/10.1016/j.bbabio.2010.11.002 |
||||
53. Pilon-Smits E.A.H., Ebskamp M.J.M., Paul M.J., Jeuken M.J.W., Weisbeek P.J., Smeekens S.C.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107 :125-130. https://doi.org/10.1104/pp.107.1.125 |
||||
54. Qiao G., Zhou J., Jiang J., Sun Y., Pan L., Song H., Jiang J., Zhuo R., Wang X., Sun Z. 2010. Transformation of Liquidambar formosana L. via Agrobacterium tumefaciens using a mannose selection system and recovery of salt tolerant lines. Plant Cell Tiss Organ Cult. 102 : 163-170. https://doi.org/10.1007/s11240-010-9717-5 |
||||
55. Racchi M.L., Bagnoli F., Balla I., Danti S. 2001. Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.). Plant Cell Rep. 20 : 169-174. https://doi.org/10.1007/s002990000300 |
||||
56. Rasool S., Ahmad A., Siddiqi T.O., Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35 : 1039-1050. https://doi.org/10.1007/s11738-012-1142-4 |
||||
57. Ribera-Fonseca A., Inostroza-Blancheteau C., Cartes P., Rengel Z., Mora M.L. 2013. Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol. Biochem. 73 : 77-82. https://doi.org/10.1016/j.plaphy.2013.08.012 |
||||
58. Sakhno L. 2014. Interferon application causes сanola seedling biomass increase. J. Microbiol. Biotechnol. Food Sci. 3, № 6 : 436-439: http://www.jmbfs.org/wp-content/uploads/2014/05/jmbfs_0612_sakhno.pdf. | ||||
59. Sakhno L.O. 2015. Adaptive plasticity in osmotic stress of bio-tech canola (Brassica napus L.) possessing cyp11A1 or simultaneously desC and epsps transgenes. Naukovi dopovidi NUBiP. 5 (54) : http://nd.nubip.edu.ua/2015_5/9.pdf. | ||||
60. Sakhno L.O., Slyvets M.S. 2014. Superoxide dismutase activity in transgenic canola. Cytol. Genet. 48 : 145-149. https://doi.org/10.3103/S0095452714030104 |
||||
61. Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101 : 7-12. https://doi.org/10.1104/pp.101.1.7 |
||||
62. Slyvets M., Sakhno L. 2014. Human interferon alpha 2b positively affects сanola growth in both aseptic non-stress and water deficit conditions. Int. J. Biosci. Nanosci. 1 (5) : 104-118. http://ijbsans.com/journal14/oct14/MS-09-14-01_3.pdf. | ||||
63. Srivastava V., Srivastava M.K., Chibani K., Nilsson R., Rouhier N., Melzer M., Wingsle G. 2009. Alternative splic-ing studies of the reactive oxygen species gene net-work in Populus reveal two isoforms of high-isoelectric-point superoxide dismutase. Plant Physiol. 149 : 1848-1859. https://doi.org/10.1104/pp.108.133371 |
||||
64. Sultana T., Deeba F., Naz F., Rose R.J., Naqvi S.M.S. 2016. Expression of a rice GLP in Medicago truncatula exerting pleiotropic effects on resistance against Fusarium oxysporum through enhancing FeSOD-like activity. Acta Physiol. Plant. 38 : 255. https://doi.org/10.1007/s11738-016-2273-9 |
||||
65. Sun W.H., Wang Y., He H.G., Li X., Song W., Du B., Meng Q.W. 2013. Reduction of methyl viologen-mediated oxidative stress tolerance in antisense transgenic to-bacco seedlings through restricted expression of StAPX. J. Zhejiang Univ. Sci. B (Biomed. Biotechnol.). 14 : 578-585. https://doi.org/10.1631/jzus.B1200190 |
||||
66. Sunkar R., Kapoor A., Zhu J. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 18 : 2051-2065. https://doi.org/10.1105/tpc.106.041673 |
||||
67. Susuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14 : 691-699. https://doi.org/10.1016/j.pbi.2011.07.014 |
||||
68. Talukdar D., Talukdar T. 2013. Superoxide-dismutase deficient mutants in common beans (Phaseolus vulgaris L.): genetic control, differential expressions of isozymes, and sensitivity to Arsenic. BioMed Res. Int. Article ID 782450, 11 pages: http://dx.doi.org/10.1155/2013/782450. https://doi.org/10.1155/2013/782450 |
||||
69. Tewari R.K., Kumar P., Sharma P.N. 2013. Oxidative stress and antioxidant responses of mulberry (Morus alba) plants subjected to deficiency and excess of manganese. Acta Physiol. Plant. 35 : 3345-3356. https://doi.org/10.1007/s11738-013-1367-x |
||||
70. Trindade I., Capitão C., Dalmay T., Fevereiro M.P., dos Santos D.M. 2010. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta. 231 : 705-716. https://doi.org/10.1007/s00425-009-1078-0 |
||||
71. van Breusegem F., Slooten L., Stassart J.M., Botterman J., Moens T., van Montagu M., Inzé D. 1999. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J. Exp. Bot. 50 : 71-78. https://doi.org/10.1093/jxb/50.330.71 |
||||
72. Vatankhah E., Niknam V., Ebrahimzadeh H. 2010. Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus. Biol. Plant. 54 : 509-514. https://doi.org/10.1007/s10535-010-0089-9 |
||||
73. Vyšniauskiene R., Ranceliene V. 2008. Changes in the activity of antioxidant enzyme superoxide dismutase in Crepis capillaris plants after the impact of UV-B and ozone. Sodininkyste ir Daržininkyste. 27 (2) : 209-214. | ||||
74. Wang W.B., Kim Y.H., Lee H.S., Deng X.P., Kwak S.S. 2009.Differential antioxidation activities in two alfalfa cultivars under chilling stress. Plant Biotechnol. Rep. 3 : 301-307. https://doi.org/10.1007/s11816-009-0102-y |
||||
75. Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B., Jiang D. 2014. Multiple heat priming enhances thermotolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol Biochem. 74 : 185-192. https://doi.org/10.1016/j.plaphy.2013.11.014 |
||||
76. Xu L., Pan Y., Yu F. 2015. Effects of water-stress on growth and physiological changes in Pterocarya stenoptera seedlings. Sci. Hortic-Amsterdam. 190 : 11-23. https://doi.org/10.1016/j.scienta.2015.03.041 |
||||
77. Yang G., Wang Y., Xia D., Gao C., Wang C., Yang C. 2014. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Organ Cult. 117 : 99-112. https://doi.org/10.1007/s11240-014-0424-5 |
||||
78. Yang L., Zhao X., Zhu H., Paul M., Zu Y., Tang Z. 2014. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front. Plant Sci. 5 : 570. https://doi.org/10.3389/fpls.2014.00570 |
||||
79. Zaefyzadeh M., Quliyev R.A., Babayeva S.M., Abbasov M.A. 2009. The effect of the interaction between genotypes and drought stress on the superoxide dis-mutase and chlorophyll content in durum wheat landraces. Turk. J. Biol. 33 : 1-7. | ||||
80. Zakharchenko N.S., Buryanov Ya.I., Lebedeva A.A. 2013. Physiological features of rapeseed plants expressing the gene for an antimicrobial peptide cecropin P1. Russ. J. Plant Physiol. 60 : 411-419. https://doi.org/10.1134/S1021443713030163 |
||||
81. Zaoui S., Gautier H., Bancel D., Chaabani G., Wasli H., Lachaâl M., Karray-Bouraoui N. 2016. Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiol. Plant. 38 : Article 187. https://doi.org/10.1007/s11738-016-2204-9 |
||||
82. Zhang J., Li D.M., Gao Y., B. Yu B., Xia C.X., Bai J.G. 2012. Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biol. Plant. 56 : 780-784. https://doi.org/10.1007/s10535-012-0136-9 |
||||
83. Zhang L., Xi D., Luo L. Meng F., Li Y., Wu C., Guo X. 2011. Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J. 278 : 1367-1378. https://doi.org/10.1111/j.1742-4658.2011.08056.x |
||||
84. Zhang S., Hu J., Zhang Y., Xie X.J., Knapp A. 2007.Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under sa-linity stress. Austr. J. Agricult. Res. 58 : 811-815. https://doi.org/10.1071/AR06253 |
||||
85. Zhang X., Wan Q., Liu F., Zhang K., Sun A., Luo B., Sun L., Wan Y. 2015. Molecular analysis of the chloroplast Cu/Zn-SOD gene (AhCSD2) in peanut. Crop J. 3 : 246-257. https://doi.org/10.1016/j.cj.2015.03.006 |
||||
86. Zhou B., Guo Z. 2009.Calcium is involved in the abscisic acid-induced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis. Biol. Plant. 53 : 63-68. https://doi.org/10.1007/s10535-009-0009-z |
||||
87. Zhou L., Wang J., Bi Y., Wang L., Tang L., Yu X., Ohtani M., Demura T., Zhuge Q. 2014. Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol. Biol. Report. 32 : 185-197. https://doi.org/10.1007/s11105-013-0640-x |
REFERENCES
|
REFERENCES
|